Math, asked by LalitJha, 10 months ago

find the vector component of vector a along the direction...
answer is 5/2(i^+j^)​
give solution

Attachments:

Answers

Answered by shadowsabers03
2

Let \vec{\sf{b}}=\sf{\hat i+\hat j.} Let angle between \vec{\sf{a}} and \vec{\sf{b}} be \theta.

So the component of \vec{\sf{a}} along \vec{\sf{b}} has magnitude \sf{a\cos\theta} and unit vector \sf{\^b} as direction.

Therefore, component of \vec{\sf{a}} along \vec{\sf{b}} is,

\longrightarrow\vec{\sf{a_b}}=\sf{a\cos\theta\,\^b}

Since \sf{\cos\theta=\hat a\cdot\hat b,}

\longrightarrow\vec{\sf{a_b}}=\sf{a\left(\hat a\cdot\hat b\right)\,\^b}

Since \mathsf{a\cdot\^a}=\vec{\sf{a}},

\longrightarrow\vec{\sf{a_b}}=\left(\vec{\sf{a}}\cdot\sf{\^b}\right)\,\sf{\^b}

\longrightarrow\vec{\sf{a_b}}=\sf{\left(\left(2\hat i+3\^j\right)\cdot\dfrac{\hat i+\^j}{\sqrt{1^2+1^2}}\right)\,\dfrac{\hat i+\^j}{\sqrt{1^2+1^2}}}

\longrightarrow\vec{\sf{a_b}}=\sf{\left(\dfrac{\left(2\hat i+3\^j\right)\cdot\left(\hat i+\^j\right)}{\sqrt2}\right)\,\dfrac{\hat i+\^j}{\sqrt2}}

\longrightarrow\vec{\sf{a_b}}=\sf{\left(\dfrac{2+3}{\sqrt2}\right)\,\dfrac{\hat i+\^j}{\sqrt2}}

\longrightarrow\vec{\sf{a_b}}=\sf{\dfrac{5}{\sqrt2}\left(\dfrac{\hat i+\^j}{\sqrt2}\right)}

\longrightarrow\underline{\underline{\vec{\sf{a_b}}=\sf{\dfrac{5}{2}\left(\hat i+\^j\right)}}}

\longrightarrow\underline{\underline{\vec{\sf{a_b}}=\sf{\dfrac{5}{2}\,\hat i+\dfrac{5}{2}\,\^j\right)}}}

Similar questions
Math, 10 months ago