Math, asked by rechaljo3, 2 months ago

find the vector equation of the line joining the points 2i+j+3k and -4i+3j-k​

Answers

Answered by mathdude500
2

\large\underline{\bf{Solution-}}

\rm :\longmapsto\:Let \: \vec{a_1} = 2\hat{i} + \hat{j} + 3\hat{k}

and

\rm :\longmapsto\:Let \: \vec{a_2} =  - 4\hat{i} + 3\hat{j}  - \hat{k}

Consider,

\rm :\longmapsto\:\vec{a_2} - \vec{a_1}

\:  \: \rm  =  \: \:  - 4\hat{i} + 3\hat{j}  - \hat{k} - (2\hat{i} + \hat{j} + 3\hat{k})

\:  \: \rm  =  \: \:  - 4\hat{i} + 3\hat{j}  - \hat{k} - 2\hat{i}  -  \hat{j}  -  3\hat{k}

\:  \: \rm  =  \: \:  - 6\hat{i} + 2\hat{j}  -4 \hat{k}

 \boxed{\bf\implies \:\vec{a_2} - \vec{a_1} =  - 6\hat{i} + 2\hat{j} - 4\hat{k}}

We know,

Equation of line passing through 2 points in vector form is given by

\rm :\longmapsto\:\vec{r} = \vec{a_1} +  \lambda \: (\vec{a_2} - \vec{a_1})

\rm :\longmapsto\:\vec{r} = 2\hat{i} + \hat{j} + 3\hat{k} + \lambda \:( - 6\hat{i} + 2\hat{j} - 4\hat{k})

\rm :\longmapsto\:\vec{r} = 2\hat{i} + \hat{j} + 3\hat{k} +2 \lambda \:( - 3\hat{i} + \hat{j} - 2\hat{k})

\rm :\longmapsto\:\vec{r} = 2\hat{i} + \hat{j} + 3\hat{k} + \mu\:( - 3\hat{i} + \hat{j} - 2\hat{k}) \:  \: where \: 2\lambda \: =  \mu

Additional Information :-

Let us consider two lines,

\rm :\longmapsto\:\vec{r} = \vec{a_1} +  \lambda \:\vec{b_1}

and

\rm :\longmapsto\:\vec{r} = \vec{a_2} +  \mu \:\vec{b_2}

then,

\boxed{ \sf \: lines \: are \:  \parallel \: if \: \vec{b_1} \times \vec{b_2} = 0}

\boxed{ \sf \: lines \: are \:  \perp \: if \: \vec{b_1}. \vec{b_2} = 0}

\boxed{ \sf \: cos\theta = \dfrac{\vec{b_1}.\vec{b_2}}{ |\vec{b_1}|  |\vec{b_2}| }}

Shortest distance between two skew lines :-

\boxed{ \sf \: d = \dfrac{ |(\vec{a_2} - \vec{a_1}).(\vec{b_1} \times \vec{b_2})| }{ |\vec{b_1} \times \vec{b_2}| }}

Distance between two parallel lines :-

\boxed{ \sf \: d = \dfrac{ |(\vec{a_2} - \vec{a_1}) \times \vec{b}| }{ |\vec{b}| }}

Similar questions