Chemistry, asked by Anonymous, 10 months ago

Find the vector equation of the line through A (3,4,-7) and B(1,-1,6). ​

Answers

Answered by BendingReality
13

Answer:

\displaystyle \vec{r}=(3\hat{i}+4\hat{j}-7\hat{k})+\lambda(-2\hat{i}-5\hat{j}+13\hat{k}) \\

Explanation:

We know :

Vector equation of line passing through the points having position vectors :

\displaystyle \vec{a} \ \text{and} \ \vec{b} \ \text{given by}\\ \\

\displaystyle \vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}) \\ \\

We have :

\displaystyle \vec{a}=3\hat{i}+4\hat{j}-7\hat{k} \ \text{and} \\ \\

\displaystyle \vec{b}=\hat{i}-\hat{j}+6\hat{k} \\ \\

So , vector equation of line passing through  A ( 3 , 4 , - 7 ) and B ( 1 , - 1 , 6 ) :

\displaystyle \vec{r}=(3\hat{i}+4\hat{j}-7\hat{k})+\lambda[(\hat{i}-\hat{j}+6\hat{k})-(3\hat{i}+4\hat{j}-7\hat{k})] \\ \\

\displaystyle \vec{r}=(3\hat{i}+4\hat{j}-7\hat{k})+\lambda(\hat{i}-\hat{j}+6\hat{k}-3\hat{i}-4\hat{j}+7\hat{k}) \\ \\

\displaystyle \vec{r}=(3\hat{i}+4\hat{j}-7\hat{k})+\lambda(-2\hat{i}-5\hat{j}+13\hat{k}) \\ \\

Hence we get required answer.

Attachments:
Similar questions