Math, asked by mettasandeep5, 5 months ago

Find the vector equation of the plane passing through the points
i-2j +5k, -5j-k, and - 3 i + 5j.

Answers

Answered by MaheswariS
6

\textbf{Given:}

\textsf{Points are}

\mathsf{\vec{i}-2\vec{j}+5\vec{k},\;-5\vec{j}-\vec{k},\;-3\vec{i}+5\vec{j}}

\textbf{To find:}

\textsf{Vector equation of the plane passing through the points}

\textbf{Solution:}

\textbf{Formula used:}

\boxed{\begin{minipage}{7cm}$\\\textsf{Vector equation of the plane passing through}\\\\\mathsf{the\;given\;points\;\vec{a},\;\vec{b},\;\vec{c}\;is}\\\\\mathsf{\;\;\;\;\vec{r}=\vec{a}+s(\vec{b}-\vec{a})+t(\vec{c}-\vec{a})}\\$\end{minipage}}

\mathsf{Here,}

\mathsf{\vec{a}=\vec{i}-2\vec{j}+5\vec{k}}

\mathsf{\vec{b}=-5\vec{j}-\vec{k}}

\mathsf{\vec{c}=-3\vec{i}+5\vec{j}}

\textsf{Vector equation of the required plane is}

\mathsf{\vec{r}=\vec{a}+s(\vec{b}-\vec{a})+t(\vec{c}-\vec{a})}

\mathsf{\vec{r}=(\vec{i}-2\vec{j}+5\vec{k})+s(-5\vec{j}-\vec{k}-\vec{i}+2\vec{j}-5\vec{k})+t(-3\vec{i}+5\vec{j}-\vec{i}+2\vec{j}-5\vec{k})}

\implies\boxed{\mathsf{\vec{r}=(\vec{i}-2\vec{j}+5\vec{k})+s(-\vec{i}-3\vec{j}-6\vec{k})+t(-4\vec{i}+7\vec{j}-5\vec{k})}}

\textbf{Find more:}

Find vector equation of plane which passes through the points (3,2,1) and (0,1,7) and is parallel to line r=2i-j+k+l(i-j-k)

https://brainly.in/question/8252354

Find the equation of the plane through (4,4,0) and perpendicular to the planes X+2y+2z=5 and 3x+3y+2z-8=0​

https://brainly.in/question/27067874


Anonymous: Awesome sir
Similar questions
Math, 11 months ago