Physics, asked by supriyadayaltk, 1 month ago

Find the vector product of i+j+k and – 3i +j-2k

Answers

Answered by sneharani4184
1

Explanation:

Let → a = 3 ^ i + ^ j − ^ k a→=3i^+j^−k^ Read more on Sarthaks.com - https://www.sarthaks.com/719532/find-vector-product-of-vectors-3i-j-k-and-2i-3j-k

please mark me brainlist

Answered by TrustedAnswerer19
11

{\orange{ \boxed{ \boxed{ \begin{array}{cc}  \sf \: let, \\   \\  \sf \:  \vec{a} = \hat{ i} + \hat{ j} +  \hat{ k } \\  \\  \sf \vec{b} =  - 3 \hat{i }+ \hat{j }  - 2  \hat{k}  \\  \\  \bf \: we \: have \: to \: find \:  :    \:  \:  \: \sf \vec{a} \times  \vec{b}\end{array}}}}} \:  \\  \\  \\ Now, \:  \\  \\  \small{{ \begin{array}{cc} \sf \vec{a} \times  \vec{b} = \begin{array}{ | ccc | } \sf \:   \hat{i} \:&  \sf\hat{j}& \sf \hat{k}\\ 1&1&1 \\  - 3&1& - 2 \:    \end{array}  \\   \\ \\  =   \sf \: \hat{i} \{1  \times ( - 2) - 1 \times 1 \}-  \hat{j} \{ - 2)\times 1 - 1 \times ( - 3) \}+  \hat{k} \{1 \times 1 - 1 \times ( - 3) \} \\  \\   \sf =  \hat{i}( - 2 - 1) -  \hat{j}( - 2 + 3 ) +  \hat{k}(1 + 3) \\  \\  \sf =  - 3 \hat{i}  -  \hat{j} + 4 \hat{k}\end{array} }}

Similar questions