Physics, asked by ushapathak1976, 9 months ago

find the velocity of projection if a projectile is projected at an angle of 60 degree to achieve its maximum height of 375 m


plz guys help me fast!​

Answers

Answered by Anonymous
5

Answer :

  • Velocity of projection is 100 m/s

Explanation :

  • Angle of the projection (θ) = 60°
  • Maximum Height (H) = 375 m

Use formula for Maximum Height in Projectile Motion :

\longrightarrow \sf{H \: = \: \dfrac{u^2 \sin ^2 \theta}{2g}} \\ \\ \longrightarrow \sf{375 \: = \: \dfrac{u^2 \sin ^2 (60^{\circ})}{2 \: \times \: 10}} \\ \\</p><p>\longrightarrow \sf{375 \: = \: \dfrac{u^2 \: \times \: \bigg( \dfrac{\sqrt{3}}{2} \bigg) ^2 }{20}} \\ \\ \longrightarrow \sf{375 \: = \: \dfrac{u^2 \: \times \: \dfrac{3}{4}}{20}} \\ \\ \longrightarrow \sf{u^2 \: = \: \dfrac{375 \: \times \: 20 \: \times \: 4}{3}} \\ \\ \longrightarrow \sf{u^2 \: = \: \dfrac{7500 \: \times \: 4 }{3}} \\ \\ \longrightarrow \sf{u^2 \: = \: 2500 \: \times \: 4} \\ \\ \longrightarrow \sf{u^2 \: = \: 10000} \\ \\  \longrightarrow \sf{u \: = \: \sqrt{10000}} \\ \\ \longrightarrow \sf{u \: = \: 100} \\ \\ \underline{\underline{\sf{Velocity \: of \: Projection \: is \: 100 \: ms^{-1}}}}

Answered by Anonymous
12

Explanation:

______________________

 \bf \huge \: Question \:  \:

  • Find the velocity of projection if a projectile is projected at an angle of 60 degree to achieve its maximum height of 375 m

______________________

 \bf \huge \: Given \:  \:

  • projectile is projected at an angle of 60 degree
  • its maximum height of 375 m

______________________

 \bf \huge \: To\:  Find\:

  • The velocity of projection

Answer :

 \bf\: We \:  Know \:

 \sf{H \: = \: \dfrac{u^2 \sin ^2 \theta}{2g}} \\ \\  </p><p>\bf\red{ Putting \: the \: value } \: \:

\sf{375 \: = \: \dfrac{u^2 \sin ^2 (60^{\circ})}{2 \: \times \: 10}} \\ \\  \sf{375 \: = \: \dfrac{u^2 \: \times \: \bigg( \dfrac{\sqrt{3}}{2} \bigg) ^2 }{20}} \\ \\  \sf{375 \: = \: \dfrac{u^2 \: \times \: \dfrac{3}{4}}{20}} \\ \\  \sf{375 \: = \: \dfrac{u^2 \: \times \: 0.75}{20}} \\ \\  \sf{u^2 \: = \: \dfrac{375 \: \times \: 20}{0.75}} \\ \\  \sf{u^2 \: = \: \dfrac{7500}{0.75}} \\ \\  \sf{u^2 \: = \: 9333} \\ \\  \sf{u \: = \: \sqrt{9333}} \\ \\  \sf{u \: = \:96.6 } \\ \\

Hence Solved

Similar questions