Physics, asked by harshisuresh, 1 month ago

find the velocity of projection of missile which has a horizontal range of 150m,if the time of flight for that range is 3sec​

Answers

Answered by Anonymous
15

Topic :- Motion in plane

\maltese \: \underline{\textbf{\textsf{AnsWer}}}\:\maltese

  • Time of flight (T) = 3 sec
  • Horizontal Range (R) = 150 m
  • Velocity (u) = ?

It's given that, the time of flight for that range is 3

sec :

\longrightarrow\:\:\sf Time \:  of  \: flight = 3  \: sec \\

\qquad\footnotesize\bullet\:\sf Time \:  of \:  flight = \dfrac{2u_{y}}{g} = \dfrac{2u \sin(\theta)}{g}  \\

\longrightarrow\:\:\sf  \dfrac{2u \sin( \theta) }{g} = 3  \: sec \\

Taking Acceleration due gravity (g) as 10 m/s² we have :

\longrightarrow\:\:\sf  \dfrac{2u \sin( \theta) }{10} = 3  \: sec \\

\longrightarrow\:\:\sf  \dfrac{u \sin( \theta) }{5} = 3   \\

\longrightarrow\:\:\sf u \sin( \theta)  = 3  \times 5  \\

\longrightarrow\:\:\sf u \sin( \theta)  = 15  \qquad \:....(e {q}^{n}  \: i)\\

Now, we're also given that, horizontal range is 150m :

\dashrightarrow\:\:\sf Horizontal \:  Range = 150 \:  m \\

\qquad\footnotesize\bullet\:\sf Horizontal \: Range = \dfrac{u^2 \sin2(\theta)}{g}  \\

\dashrightarrow\:\:\sf \dfrac{u^2 \sin2(\theta)}{g} = 150  \\

\qquad\footnotesize\bullet\:\sf \sin2(\theta) =2  \sin( \theta) . \cos( \theta) \\

\dashrightarrow\:\:\sf\dfrac{u^22 \sin( \theta).\cos( \theta)}{g} = 150  \\

\qquad\footnotesize\bullet\:\sf u^22 \sin( \theta).\cos( \theta) =2u \sin( \theta).u \cos( \theta)    \\

\dashrightarrow\:\:\sf\dfrac{2u \sin( \theta). u\cos( \theta)}{g} = 150  \\

\dashrightarrow\:\:\sf\dfrac{2u \sin( \theta).u \cos( \theta)}{10} = 150  \\

\dashrightarrow\:\:\sf\dfrac{u \sin( \theta).u \cos( \theta)}{5} = 150  \\

\dashrightarrow\:\:\sf u \sin( \theta). u\cos( \theta)= 150 \times 5  \\

\dashrightarrow\:\:\sf u\sin( \theta). u\cos( \theta)= 750 \\

\qquad\footnotesize\bullet\:\sf Replacing  \: u \sin( \theta)  = 15 \: from \: equation \: (i) \: we \: have: \\

\dashrightarrow\:\:\sf 15. u\cos( \theta)= 750 \\

\dashrightarrow\:\:\sf  u\cos( \theta)=   \dfrac{750}{15} \\

\dashrightarrow\:\:\sf  u\cos( \theta)=  50 \\

Now, let's find the angle of projection first :

:\implies \sf \dfrac{u\sin(\theta)}{u \cos (\theta)} = \dfrac{15}{50} \\

:\implies \sf \dfrac{\sin(\theta)}{ \cos (\theta)} = \dfrac{15}{50} \\

:\implies \sf  \tan \theta = \dfrac{15}{50} \\

:\implies \sf  \theta = \tan^{ - 1}   \bigg(\dfrac{15}{50} \bigg) \\

:\implies \sf  \theta = \tan^{ - 1}   \bigg(0.3\bigg) \\

:\implies \sf  \theta = 16.6 {9}^{ \circ}  \\

Now, put the value of θ = 16.69° in the eqⁿ (i) :-

\longrightarrow\:\:\sf u \sin( \theta)  = 15  \\

\longrightarrow\:\:\sf u \sin( 16.6 {9}^{ \circ} )  = 15  \\

\qquad\footnotesize\bullet\:\sf \sin(16.69^{ \circ}) \approx 0.30\\

\longrightarrow\:\:\sf u  \times 0.30  = 15  \\

\longrightarrow\:\:\sf u=\dfrac{15}{0.30}   \\

\longrightarrow\:\:\sf u=\dfrac{15 \times 10}{0.30 \times 10}   \\

\longrightarrow\:\:\sf u=\dfrac{150}{3}   \\

\longrightarrow\:\:\sf u=\dfrac{150}{3}   \\

\longrightarrow\:\: \underline{ \boxed{\sf u=50 {ms}^{ - 1} }}   \\

Answered by riguez250
0

Answer:

answer is 52.20153254

Explanation:

the sine or cosine of the found angle you divide the number it is equated to it gives that answer from the two earlier equations we had

Similar questions