Find the vertices of a triangle , if the mid points the sides are ( 12, 12), ( 8, 4), ( 10, 5).
Answers
Answered by
1
Step-by-step explanation:
ANSWER
Given,
A(a,b) B(c,d) C(e,f)
Midpoint of AB:
(10,5)=((a+c)/2),((b+d)/2)
=>a+c=20...........(1) and b+d=10............(2)
Midpoint of BC:
(8,4)=((c+e)/2),((d+f)/2)
=>c+e=16............(3) and d+f=8..............(4)
Midpoint of AC:
(6,6)=((a+e)/2),((b+f)/2)
=>a+e=12...........(5) and b+f=12...............(6)
(1)-(3)=>
=>a+c-c-e=20-16
=>a-e=4...........(7)
(5)+(7)=>
=>a+e+a-e=12+4
=>2a=16=> a=8
substitute a=8 in (1)
=>8+c=20
=>c=12
substitute c=12 in (3)
=>12+e=16
=>e=4
(2)-(4)=>
=> b+d-d-f=10-8
=>b-f=2................(8)
(8)+(6)=>
=>b-f+b+f=2+12
=>2b=14
=>b=7
substitute b=7 in (2)
=>7+d=10
=>d=3
substitute d=3 in(4)
=>3+f=8
=>f=5
A(8,7) B(12,3) C(4,5)
Similar questions