Find the vertices of a triangle, the mid points of whose sides are (3, 1), (5, 6) and (-3, 2).
Answers
Step-by-step explanation:
I think that this question is very important
Answer:
-3
now,
now,by elimination:
now,by elimination:x1 + x2 = 6
now,by elimination:x1 + x2 = 6x1 + x3 = -6
now,by elimination:x1 + x2 = 6x1 + x3 = -6-----------------
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +----------------
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------2y3 = 14
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------2y3 = 14y3 = 7
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------2y3 = 14y3 = 7 of y3 in any of the equation we get:
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------2y3 = 14y3 = 7 of y3 in any of the equation we get:y3 + y2 = 12
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------2y3 = 14y3 = 7 of y3 in any of the equation we get:y3 + y2 = 12y2 = 12 - 7
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------2y3 = 14y3 = 7 of y3 in any of the equation we get:y3 + y2 = 12y2 = 12 - 7y2 = 5
now,by elimination:x1 + x2 = 6x1 + x3 = -6------------------ - +---------------- x2 - x3 = 12(1)by elimination of (1) and x2 + x3 = 10 { from above }x2 - x3 = 12x2 +x3 = 10----------------2x2= 22x2= 11 { from above }y3 - y2 = 2y3 + y2 = 12-----------------2y3 = 14y3 = 7 of y3 in any of the equation we get:y3 + y2 = 12y2 = 12 - 7y2 = 5y1 = -3