Math, asked by mimii77229, 20 days ago

Find the volime, Total surface area and lateral surface area of a cube of edge 10cm​

Answers

Answered by mathdude500
4

Question :-

Find the volume, total surface area and lateral surface area of a cube of edge 10 cm.

\large\underline{\sf{Solution-}}

Given that,

Edge of the cube, x = 10 cm

We know that,

\boxed{ \rm{ \:Volume_{(cube)} \:  =  \:  {(edge)}^{3} \: }} \\

So,

\rm \: Volume_{(cube)} =  {(10)}^{3}  \\

 \red{\rm\implies \:Volume_{(cube)} \:  =  \: 1000 \:  {cm}^{3} \:  \: } \\

Now, we know that

Lateral surface area (LSA) of a cube is given by

\boxed{ \rm{ \:LSA_{(cube)} \:  =  \:  {4(edge)}^{2} \: }} \\

So,

\rm \: LSA_{(cube)} \:  =  \: 4 \times  {(10)}^{2}

\rm \: LSA_{(cube)} \:  =  \: 4 \times  100 \\

 \red{\rm\implies \:LSA_{(cube)} \:  =  \: 400 \:  {cm}^{2}}  \\

Now, we know

Total Surface Area (TSA) is given by

\boxed{ \rm{ \:TSA_{(cube)} \:  =  \: 6 \times  {(edge)}^{2}  \: }} \\

So,

\rm \: TSA_{(cube)} \:  =  \: 6 \times  {(10)}^{2}  \\

\rm \: TSA_{(cube)} \:  =  \: 6 \times  100  \\

 \red{\rm\implies \:TSA_{(cube)} \:  =  \: 600 \:  {cm}^{2}  \: } \\

Hence,

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\sf{Volume_{(cube)} = 1000 \:  {cm}^{3} } \\  \\ &\sf{LSA_{(cube)} = 400 \:  {cm}^{2} }\\ \\  &\sf{TSA_{(cube)} = 600 \:  {cm}^{2} } \end{cases}\end{gathered}\end{gathered} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by TheAestheticBoy
8

Question :-

  • Find the Volume, Total Surface Area and Lateral Surface Area of a Cube of Edge 10 cm .

⠀⠀⠀⠀⠀⠀⠀

Answer :-

  • Volume = 1000 cm³ .
  • Total Surface Area = 600 cm² .
  • Lateral Surface Area = 400 cm² .

⠀⠀⠀⠀⠀⠀⠀

Explanation :-

⠀⠀⠀⠀⠀⠀⠀

First, we will find the Volume :-

 \Longrightarrow \: \sf{ Volume \: _{Cube} = ( \: edge \: ) {}^{3}  } \\

 \Longrightarrow \:  \sf{Volume \: _{Cube} = ( \: 10 \: ) {}^{3} } \\

 \Longrightarrow \:  \sf{Volume \: _{Cube} = 1000 \:  {cm}^{3} } \\

⠀⠀⠀⠀⠀⠀⠀

Now, we will find Total Surface Area :-

 \Longrightarrow \:  \sf{ T.S.A \: _{Cube} = 6 \times ( \: edge \: ) {}^{2} } \\

 \Longrightarrow \:  \sf{T.S.A \: _{Cube} = 6 \times ( \: 10 \: ) {}^{2} } \\

 \Longrightarrow \:  \sf{T.S.A \: _{Cube} = 6 \times 100} \\

 \Longrightarrow \:  \sf{T.S.A \: _{Cube} = 400 \: cm {}^{2} } \\

⠀⠀⠀⠀⠀⠀⠀

Here, let's find Lateral Surface Area :-

 \Longrightarrow \:  \sf{ L.S.A \: _{Cube} = 4 \times ( \: edge \: ) {}^{2} } \\

 \Longrightarrow \:  \sf{L.S.A \: _{Cube} = 4 \times ( \: 10 \: ) {}^{2} } \\

 \Longrightarrow \:  \sf{L.S.A \: _{Cube} = 4 \times 100} \\

 \Longrightarrow \:  \sf{L.S.A \: _{Cube} = 400 \:  {cm}^{2} } \\

⠀⠀⠀⠀⠀⠀⠀

Hence :-

  • Volume is 1000 cm³ .
  • Total Surface Area is 600 cm² .
  • Lateral Surface Area is 400 cm² .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \pmb {\sf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar \:  \sf{Volume = ( \: edge \: ) {}^{3} }  \\  \\  \\  \footnotesize \bigstar \:  \sf{Total \: Surface \: Area = 6 \times ( \: edge \: ) {}^{2} } \\  \\  \\  \footnotesize \bigstar \:  \sf{Lateral \: Surface \: Area = 4 \times ( \: edge \: ) {}^{2} } \\  \\  \\  \footnotesize \bigstar \:  \sf{Diagonal = ( \: edge \:  \sqrt{3}  \: )}\end{array}}\end{gathered}\end{gathered}

Similar questions