Math, asked by nazzehra28, 3 months ago

find the volume and the total surface area of a right circular solid cylinder whose radius and height respectively are 14 cm and 20 cm.​

Answers

Answered by joy20modi
0

Answer:

1760

Step-by-step explanation:

apply 2pai r h formula and get your this answer

Answered by MяMαgıcıαη
155

Step by step explanation :

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

  • Finding it's volume :

\:\:\::\implies\:\sf Volume_{(solid\:cylinder)} = \pi r^2 h

Values that we have :

  • Radius (r) = 14 cm
  • Height (h) = 20 cm
  • π = 22/7

Putting all values :

\:\:\::\implies\:\sf Volume_{(solid\:cylinder)} = \dfrac{22}{7}\:\times\:14\:\times\:14\:\times\:20

\:\:\::\implies\:\sf Volume_{(solid\:cylinder)} = \dfrac{22}{\cancel{7}}\:\times\:\cancel{14}\:\times\:14\:\times\:20

\:\:\::\implies\:\sf Volume_{(solid\:cylinder)} = 22\:\times\:2\:\times\:14\:\times\:20

\:\:\::\implies\:\bf{Volume_{(solid\:cylinder)} = \red{12,320\:cm^3}}

  • Finding it's total surface area (T.S.A) :

\:\:\::\implies\:\sf T.S.A_{(solid\:cylinder)} = 2\pi r (r + h)

Values that we have :

  • Radius (r) = 14 cm
  • Height (h) = 20 cm
  • π = 22/7

Putting all values :

\:\:\::\implies\:\sf T.S.A_{(solid\:cylinder)} = 2\:\times\:\dfrac{22}{7}\:\times\:14 (14 + 20)

\:\:\::\implies\:\sf T.S.A_{(solid\:cylinder)} = 2\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\cancel{14}\:\times\: 34

\:\:\::\implies\:\sf T.S.A_{(solid\:cylinder)} = 2\:\times\:22\:\times\:2 \:\times\:34

\:\:\::\implies\:\bf{T.S.A_{(solid\:cylinder)} = \red{2,992\:cm^2}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\therefore\:{\underline{\frak{Volume\:and\:T.S.A\:of\:solid\:cylinder\:=\:12,320\:cm^3\:and\:2,992\:cm^2}}}

Similar questions