Math, asked by jammukhandwa, 10 months ago

find the volume and total surface area of cuboid when length equal to 5 cm breadth equal to 4 cm height equal to 3 cm​

Answers

Answered by Anonymous
111

AnswEr :

\bf{ Given}\begin{cases}\text{Length (l)= 5 cm}\\\text{Breadth (b)= 4 cm}\\ \text{Height (h) = 3 cm}\\\text{Find Volume and TSA of Cuboid.} \end{cases}

V O L U M E O F C U B O I D :

\longrightarrow \tt Volume = Length \times Breadth \times Height \\ \\\longrightarrow \tt Volume =5cm \times 4cm \times 3cm \\ \\\longrightarrow \boxed{\red{\tt Volume =60\:{cm}^{3}}}

Volume of Cuboid will be 60 cm³.

\rule{300}{1}

T S A O F C U B O I D :

\longrightarrow \tt TSA = 2(lb + bh + hl) \\ \\\longrightarrow \tt TSA = 2 [(5 \times 4) + (4 \times 3) + (3 \times 5)] \\ \\\longrightarrow \tt TSA = 2 [20 {cm}^{2} + 12 {cm}^{2} + 15 {cm}^{2} ] \\ \\\longrightarrow \tt TSA = 2 \times 47 {cm}^{2} \\ \\\longrightarrow \boxed{ \red{ \tt TSA = 94\:{cm}^{2} }}

Total Surface Area of Cuboid is 94 cm².

\rule{300}{2}

• I M P O R T A N T ⠀F O R M U L A E :

1 ) Cuboid :

↠ Volume = lbh

↠ Surface Area = 2(l + b) × h

↠ TSA = 2(lb + bh + hl)

↠ Diagonal = √(l² + b² + h²)

\rule{100}{2}

2 ) Cube :

↠ Volume = (Side)³

↠ Surface Area = 4 × (Side)²

↠ TSA = 6 × (Side)²

↠ Diagonal = √3 Side

\rule{100}{2}

3 ) Cylinder :

↠ Volume = πr²h

↠ CSA = 2πrh

↠ TSA = 2πr(r + h)

\rule{100}{2}

4 ) Cone :

↠ Volume = 1 /3 × πr²h

↠ CSA = πrl

↠ TSA = πr(r + l)

↠ Slant Height ( l ) = √(r² + h²)

\rule{100}{2}

5 ) Sphere :

↠ Volume = 4 /3 × πr³

↠ Surface Area = 4πr²

\rule{100}{2}

6 ) Hemisphere :

↠ Volume = 2 /3 × πr³

↠ CSA = 2πr²

↠ TSA = 3πr²

#answerwithquality #BAL

Answered by lAravindReddyl
73

Answer:-

\mathsf{\implies V =   60 cm^3}

\mathsf{\implies TSA =   94 cm^2}

Explanation:-

Given:-

In a cuboid,

» length = 5cm

» breadth = 4cm

» height = 3cm

To Find:-

Volume and T.S.A.

Solution:-

W.k.t,

\pink{\boxed{\blue{\bold{Volume \: of \: cuboid = lbh}}}}

\mathsf{\implies V =   lbh}

\mathsf{\implies V =   (5) (4) (3)}

\mathsf{\implies V =   60 cm^3}

\green{\boxed{\red{\bold{TSA \: of \: cuboid = 2(lb+bh+hl)}}}}

\mathsf{\implies TSA =  2(lb+bh+hl)}

\mathsf{\implies TSA =   2[ (5)(4) + (4)(3) + (3)(5)]}

\mathsf{\implies TSA =   2(20+12+15)}

\mathsf{\implies TSA =   2(47)}

\mathsf{\implies TSA =   94 cm^2}

Similar questions