Math, asked by hkhk7204234424, 4 months ago

find the volume and TSA of a cone having radius 3cm and height 4cm with full explanation?​

Answers

Answered by suhail2070
0

Answer:

volume = 12\pi \:  {cm}^{3}  \\ tsa = 24\pi \:  {cm}^{2} .

Step-by-step explanation:

volume =  \frac{1}{3}  \times \pi {r}^{2} h =  \frac{1}{3 }  \times \pi \times  {3}^{2}  \times 4 = 12\pi \:  {cm}^{3}  \\  \\ l =  \sqrt{ {3}^{2}  +  {4}^{2} }  = 5 \: cm \\  \\ tsa = \pi \: r \:( r  + \: l)   \\  \\  tsa= \pi \: (3)(3 + 5) = 24\pi \:  {cm}^{2} .

Answered by ItsTogepi
7

\huge\underline\mathtt\color{teal}Given

  • Radius of the cone = 3 cm
  • Height of the cone = 4 cm.

\huge\underline\mathtt\color{teal}To \: find

  • The volume and TSA of the cone.

\huge\underline\mathtt\color{teal}Solution

We know that,

\sf{</u></strong><strong><u>T</u></strong><strong><u>he \: volume \: of \: the \: cone =  \frac{1}{3} \pi  {r}^{2} h}

\sf{</u></strong><strong><u>T</u></strong><strong><u>he \: volume \: of \: the \: cone =  \frac{1}{3}  \times  \frac{22}{7}  \times  ({3})^{2}  \times 4}

\sf{</u></strong><strong><u>T</u></strong><strong><u>he \: volume \: of \: the \: cone =  \frac{1}{\cancel3}  \times  \frac{22}{7}  \times {\cancel 3} \times 3 \times 4}

\sf{</u></strong><strong><u>T</u></strong><strong><u>he \: volume \: of \: the \: cone =  \frac{264}{7} }

\sf{</u></strong><strong><u>T</u></strong><strong><u>he \: volume \: of \: the \: cone = 37.71}

Now,

 \sf{{l}^{2} =  {r}^{2}  +  {h}^{2}  }

\sf{\implies l =  \sqrt{ {r}^{2} +  {h}^{2}  } }

Now ,putting the values,we get,

\sf{\implies l =  \sqrt{ {3}^{2} +  {4}^{2}  } }

\sf{\implies l =  \sqrt{9 + 16} }

\sf{\implies l =  \sqrt{25}}

\sf{\implies l = 5</u></strong><strong><u> </u></strong><strong><u>cm</u></strong><strong><u>}

Again,we know that,

The total surface area of the cone

\sf{ = \pi \: r(r + l)}

\sf{\implies \: </u></strong><strong><u>TSA</u></strong><strong><u> </u></strong><strong><u>=  \frac{22}{7}  \times 3(3 + 5)}

\sf{\implies </u></strong><strong><u>TSA</u></strong><strong><u> </u></strong><strong><u>=  \frac{66}{7}  \times 8 }

\sf{\implies </u></strong><strong><u>TSA</u></strong><strong><u> </u></strong><strong><u>= 75.42 }

"Hence, the volume of the cone=37.71 cm³ and the total surface area of the cone = 75.42 sq.cm"

Similar questions