Math, asked by Shilpa00, 2 months ago

find the volume bounded by x²+y²+z²=9 using triple integration.​

Answers

Answered by pulakmath007
18

SOLUTION

TO DETERMINE

The volume bounded by x² + y² + z² = 9 using triple integration

EVALUATION

Here the given equation of the sphere is

x² + y² + z² = 9

Comparing with the general equation

x² + y² + z² = a² we get

a² = 9

⇒ a = 3

Changing to polar spherical coordinates by putting

x = r sin θ cos Φ , y = r sin θ sin Φ , z = r cos θ

We have dx dy dz = r² sin θ dr dθ dΦ

Also the volume of the sphere is 8 times the volume of its portion in the positive octant for which r varies from 0 to 3 , θ varies from 0 to π/2 and Φ varies from 0 to π/2

∴ Volume of the sphere

\displaystyle    \sf{ = 8 \: \int\limits_{0}^{3}  \int\limits_{0}^{ \frac{\pi}{2} } \int\limits_{0}^{ \frac{\pi}{2}} } \:  {r}^{2} \sin \theta  \,  \: dr  \: d \theta  \: d \phi

\displaystyle    \sf{ = 8 \: \int\limits_{0}^{3}  {r}^{2}  \: dr \:  \int\limits_{0}^{ \frac{\pi}{2} }\sin \theta \:d \theta  \int\limits_{0}^{ \frac{\pi}{2}} } \:    \: d \phi

 \displaystyle \sf{ = 8 \times   \frac{ {r}^{3} }{3}  \bigg|_0^3 \times  -  \cos \theta  \bigg|_0^{ \frac{\pi}{2} } \times \:  \phi  \bigg|_0^{ \frac{\pi}{2} }}

 \displaystyle \sf{ = 8 \times   \bigg( \frac{ {3}^{3} }{3}  - 0 \bigg) \times   \bigg(-  \cos \frac{\pi}{2} + \cos 0 \bigg)   \times \bigg( \frac{\pi}{2}  - 0 \bigg)}

 \displaystyle \sf{ = 8 \times   9 \times  1   \times  \frac{\pi}{2}  }

 \displaystyle \sf{ = 36\pi  }

FINAL ANSWER

Volume of the sphere = 36π cubic unit

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882


amansharma264: Brilliant
pulakmath007: Thank you Brother
Similar questions