Math, asked by hs2347863, 2 months ago

find the volume, CSA, TSA of right circular cylinder with base radius 14 cm, height 35 cm​

Answers

Answered by Anonymous
101

Answer:

Given :-

  • A right circular cylinder with base radius 14 cm, height 35 cm.

To Find :-

  • What is the volume, curved surface area (CSA), total surface area (TSA) of circular cylinder.

Formula Used :-

Volume Formula :

★ Volume = πr²h

Curved Surface Area or CSA Formula :

★ Curved Surface Area = 2πrh

Total Surface Area or TSA Formula :

★ Total Surface Area = 2πr(r + h)

where,

  • π = pie or 22/7
  • r = Radius
  • h = Height

Solution :-

In case of volume of right circular cylinder :

Given :

  • Radius (r) = 14 cm
  • Height (h) = 35 cm

According to the question by using the formula we get,

Volume = πr²h

Volume = 22/7 × (14)² × 35

Volume = 22/7 × 14 × 14 × 35

Volume = 22/7 × 196 × 35

Volume = 22/7 × 6860

Volume = 22 × 980

Volume = 21560 cm³

The volume of right circular cylinder is 21560³ .

In case of curved surface area or CSA of right circular cylinder :

Given :

  • Radius (r) = 14 cm
  • Height (h) = 35 cm

According to the question by using the formula we get,

Curved Surface Area = 2πrh

Curved Surface Area = 2 × 22/7 × 14 × 35

Curved Surface Area = 44/7 × 490

Curved Surface Area = 44 × 70

Curved Surface Area = 3080 cm²

The curved surface area or CSA of right circular cylinder is 3080 cm² .

In case of total surface area or TSA of right circular cylinder :

Given :

  • Radius (r) = 14 cm
  • Height (h) = 35 cm

According to the question by using the formula we get,

Total Surface Area = 2πr(r + h)

Total Surface Area = 2 × 22/7 × 14(14 + 35)

Total Surface Area = 44/7 × 14(49)

Total Surface Area = 44/7 × 14 × 49

Total Surface Area = 44/7 × 686

Total Surface Area = 44 × 98

Total Surface Area = 4312 cm²

The total surface area or TSA of right circular cylinder is 4312 cm² .

Answered by SparklingBoy
17

\large \bf \clubs \:  Given :-

For A Right Circular Cylinder :

  • Base Radius , r = 14 cm

  • Height , h = 35 cm

-----------------------

\large \bf \clubs \:   To  \: Find :-

{\begin{cases} \:  \: \text{CSA \: of \: Cylinder } \\ \text{ TSA \: of \: Cylinder } \\  \text{ Volume \: of \: Cylinder} \end{cases}}

-----------------------

\large \bf \clubs \:   Main \:  Formulas  :-

{\begin{cases} \:  \: \text{CSA \: of \: Cylinder }  = 2\pi \text{rh}\\ \text{ TSA \: of \: Cylinder } = 2\pi \text{r(r + h)} \\  \text{ Volume \: of \: Cylinder} = \pi   {r}^{2} \text{h} \end{cases}}

Where ,

  • r = Base Radius of Cylinder

  • h = height of Cylinder

  • \pi =  \dfrac{22}{7}

-----------------------

\large \bf \clubs \:   Solution  :-

We Have ,

  • r = 14 cm

  • h = 35 cm

Calculating CSA of Cylinder :

Using Formula of CSA

 \text{CSA =2πrh } \\  \\  = 2 \times  \frac{22}{7}  \times 14 \times 35 \\  \\  =44\times70\\\\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf CSA = 3080 cm^2} }}}

Calculating TSA of Cylinder :

Using Formula of TSA

\text{TSA =2πr(r + h) } \\  \\  = 2 \times  \frac{22}{7}  \times 14 (14 + 35)\\  \\  =2 \times  \frac{22}{7}  \times 14 \times 49\\\\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf TSA = 4312 cm^2} }}}

Calculating Volume of Cylinder :

Using Formula of Volume

\text{Volume =πr²h } \\  \\  =  \frac{22}{7}  \times (14 {)}^{2}  \times 35 \\  \\  =\frac{22}{7}  \times 196\times 35 \\\\ \purple{ \large :\longmapsto  \underline {\boxed{{\bf Volume = 21560 cm^3} }}}

Hence ,

\pink{{\begin{cases} \:  \: \bf{CSA \: of \: Cylinder }=3080cm^2 \\ \bf{ TSA \: of \: Cylinder }=4312 cm^2 \\  \bf{ Volume \: of \: Cylinder}=21560cm^3 \end{cases}}}

Similar questions