Math, asked by Anonymous, 3 days ago

find the volume, CSA, TSA of right circular cylinder with base radius 14 cm, height 35 cm.​​

Answers

Answered by SparklingThunder
52

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

Find the volume , CSA ( Curved Surface Area ) , TSA ( Total Surface Area ) of right circular cylinder with base radius 14 cm , height 35 cm.

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • Volume of cylinder = \sf21560\:{cm}^{3}

  • CSA of cylinder = \sf3080\:{cm}^{2}

  • TSA of cylinder = \sf4312\:{cm}^{2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Radius of right circular cylinder ( r )= 14 cm

  • Height of right circular cylinder ( h )= 35 cm

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Volume of right circular cylinder

  • CSA of right circular cylinder

  • TSA of right circular cylinder

 \green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf\pi {r}^{2}h $}  \\  \\  \textsf{CSA of cylinder = $\sf2\pi rh $ } \\  \\ \textsf{TSA of cylinder = $\sf2\pi r(h + r) $} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

  \red{ \underline{\underline{\textsf{Volume of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf = \frac{22}{ \cancel7}   \times  {(14)}^{2}  \times  \cancel{35} { \:  \:  }^{5}  \:  \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf =22 \times 196 \times 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf =21560 \:   {cm}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:

  \red{ \underline{\underline{\textsf{CSA of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = 2 \times  \frac{22}{ \cancel7} \times 14 \times  \cancel{35} { \:  \: }^{5}    \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = 2 \times 22 \times 14 \times 5\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf =3080 \:   {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

  \red{ \underline{\underline{\textsf{TSA of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times  \frac{22}{ \cancel7} \times  \cancel{14} { \:  \: }^{2}   \: (35 + 14)   \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times 22 \times 2 \times 49\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf =4312 \:   {cm}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf21560 \:  {cm}^{3}  $}  \\  \\  \textsf{CSA of cylinder = $\sf3080 \:  {cm}^{2} $ } \\  \\ \textsf{TSA of cylinder = $\sf4312 \:  {cm}^{2}  $} \end{array}}}

Answered by MяMαgıcıαη
89

Given information,

Find the volume, CSA, TSA of right circular cylinder with base radius 14 cm, height 35 cm.

  • Radius of base of cylinder = 14 cm
  • Height of cylinder = 35 cm
  • Volume of cylinder = ?
  • C.S.A of cylinder = ?
  • T.S.A of cylinder = ?

Using formula,

Volume of cylinder = πr²h

Where,

  • π = Pi
  • r = radius of base of cylinder
  • h = height of cylinder

We have,

  • π = 22/7
  • r = 14 cm
  • h = 35 cm

Putting all values,

➻ Volume of cylinder = 22/7 × 14² × 35

➻ Volume of cylinder = 22/7 × 196 × 35

➻ Volume of cylinder = 22 × 196 × 5

➻ Volume of cylinder = 196 × 110

Volume of cylinder = 21560 cm³

  • Henceforth, volume of cylinder is 21560 cm³.

Using formula,

C.S.A of cylinder = 2πrh

Where,

  • π = Pi
  • r = radius of base of cylinder
  • h = height of cylinder

We have,

  • π = 22/7
  • r = 14 cm
  • h = 35 cm

Putting all values,

➻ C.S.A of cylinder = 2 × 22/7 × 14 × 35

➻ C.S.A of cylinder = 2 × 22 × 14 × 5

➻ C.S.A of cylinder = 44 × 70

C.S.A of cylinder = 3080 cm²

  • Henceforth, C.S.A of cylinder is 3080 cm².

Using formula,

T.S.A of cylinder = 2πr(r + h)

Where,

  • π = Pi
  • r = radius of base of cylinder
  • h = height of cylinder

We have,

  • π = 22/7
  • r = 14 cm
  • h = 35 cm

Putting all values,

➻ T.S.A of cylinder = 2 × 22/7 × 14(14+35)

➻ T.S.A of cylinder = 2 × 22/7 × 14 × 49

➻ T.S.A of cylinder = 2 × 22 × 14 × 7

➻ T.S.A of cylinder = 44 × 98

T.S.A of cylinder = 4312 cm²

  • Henceforth, T.S.A of cylinder is 4312 cm².

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions