Math, asked by jevitesh1603, 1 year ago

Find the volume cuboid whose length,breadth and height are (xsquare-2);(2x+4)and (x-3)

Answers

Answered by Anonymous
3

Answer:

2x⁴ - 2x³ - 16x² + 4x + 24

Step-by-step explanation:

Length = x² - 2.

Breadth = 2x + 4

Height = x - 3.

Volume of cuboid = Length * Breadth * Height

= (x² - 2)(2x + 4)(x - 3)

= (x² - 2)[2x² - 6x + 4x - 12]

= (x² - 2)[2x² - 2x - 12]

= 2x⁴ - 2x³ - 12x² - 4x² + 4x + 24

= 2x⁴ - 2x³ - 16x² + 4x + 24.


Hoep it helps you.

#Bebrainly

Answered by MonarkSingh
3
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer.

Length = x^2 - 2

Breadth = 2x +4

Height = x - 3

As we know the formula

Volume of Cuboid= Length × Breadth × Height
 = ( {x}^{2}  - 2)(2x + 4)(x - 3) \\  \\  = ( {x}^{2} (2x + 4) - 2(2x + 4))(x - 3) \\  \\  =( 2 {x}^{3} + 4 {x}^{2}  - 4x - 8)(x - 3) \\  \\  = x(2 {x}^{3}  + 4 {x}^{2}  - 4x - 8) - 3(2 {x}^{3}  + 4 {x}^{2}  - 4x - 8) \\  \\  = 2 {x}^{4}  + 4 {x}^{3}  - 4 {x}^{2}  - 8x - 6 {x}^{3}  - 12 {x}^{2}  + 12x + 24 \\  \\  = 2 {x}^{4}  + 4 {x}^{3}  - 6 {x}^{3}  - 4 {x}^{2}  - 12 {x}^{2}  - 8x + 12x + 24 \\  \\  = (2 {x}^{4}  - 2 {x}^{3}  - 16 {x}^{2}  + 4x + 24) \: cubic \: unit

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope \: it \: helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!}}}

<marquee>
\huge\bf{\huge{\bf{\bf{@... MonarkSingh}}}}
Similar questions