Math, asked by Anonymous, 11 months ago

Find the volume, curved surface area and total surface area of each of the cylinders
whose dimensions are:
(1) radius of the base - 7 cm and height 50 cm
(2) radius of the base -5.6 m and height = 1.25 m​

Answers

Answered by kodidasuchakri2546
4

Answer:

ANSWER IS GIVEN IN THE PICTURE ABOVE U CAN CHECK THERE......

Attachments:
Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Volume\:of\:cylinder=7700\:cm}^{3}}}

\green{\therefore{\text{C.S.A\:of\:cylinder=2200\:cm}^{2}}}

\green{\therefore{\text{T.S.A\:of\:cylinder=2508\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Radius(r) = 7 \: cm} \\  \\   : \implies  \text{Height(h) = 50 \: cm}  \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies   \text{Volume \: of \: cylinder = ? }\\  \\ : \implies   \text{C.S.A \: of \: cylinder = ? }\\ \\  : \implies   \text{T.S.A\: of \: cylinder = ? }

• According to given question :

 \bold{As \: we \: know \: that  } \\  :  \implies  \text{Volume \: of \: cylinder} = \pi {r}^{2} h \\  \\   : \implies  \text{Volume \: of \: cylinder} = \frac{22}{7}  \times  {7}^{2}  \times 50 \\  \\  :  \implies  \text{Volume \: of \: cylinder} =22 \times 7 \times 50 \\  \\   \green{ : \implies  \text{Volume \: of \: cylinder} =7700  \: {cm}^{3} } \\  \\  \bold{As \: we \: know \: that} \\   : \implies  \text{C.S.A\: of \: cylinder} =2\pi rh \\  \\ : \implies  \text{C.S.A\: of \: cylinder} =2  \times \frac{ 22}{7}  \times 7 \times 50 \\  \\ : \implies  \text{C.S.A\: of \: cylinder} =2 \times 22 \times 50 \\  \\ \green{ : \implies  \text{C.S.A\: of \: cylinder} =2200 \:  {cm}^{2}} \\  \\  \bold{As \: we \: know \: that} \\   : \implies  \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\  \\ : \implies  \text{T.S.A\: of \: cylinder} =2 \times  \frac{22}{7}  \times 7(50 + 7) \\  \\ : \implies  \text{T.S.A\: of \: cylinder} =2 \times 22 \times 57 \\  \\ \green{ : \implies  \text{T.S.A\: of \: cylinder} =2508 \:  {cm}^{2} }

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Volume\:of\:cylinder=123.2\:m}^{3}}}

\green{\therefore{\text{C.S.A\:of\:cylinder=44\:m}^{2}}}

\green{\therefore{\text{T.S.A\:of\:cylinder=241.12\:m}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Radius(r) = 5.6 \: m} \\  \\   : \implies  \text{Height(h) = 1.25 \: m}  \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies   \text{Volume \: of \: cylinder = ? }\\  \\ : \implies   \text{C.S.A \: of \: cylinder = ? }\\ \\  : \implies   \text{T.S.A\: of \: cylinder = ? }

• According to given question :

 \bold{As \: we \: know \: that  } \\  :  \implies  \text{Volume \: of \: cylinder} = \pi {r}^{2} h \\  \\   : \implies  \text{Volume \: of \: cylinder} = \frac{22}{7}  \times  {5.6}^{2}  \times 1.25 \\  \\  :  \implies  \text{Volume \: of \: cylinder} =22 \times 4.48 \times 1.25 \\  \\   \green{ : \implies  \text{Volume \: of \: cylinder} =123.2  \: {m}^{3} } \\  \\  \bold{As \: we \: know \: that} \\   : \implies  \text{C.S.A\: of \: cylinder} =2\pi rh \\  \\ : \implies  \text{C.S.A\: of \: cylinder} =2  \times \frac{ 22}{7}  \times 5.6 \times 1.25 \\  \\ : \implies  \text{C.S.A\: of \: cylinder} =2 \times 22 \times 1\\  \\ \green{ : \implies  \text{C.S.A\: of \: cylinder} =44 \:  {m}^{2}} \\  \\  \bold{As \: we \: know \: that} \\   : \implies  \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\  \\ : \implies  \text{T.S.A\: of \: cylinder} =2 \times  \frac{22}{7}  \times 5.6(1.25 + 5.6) \\  \\ : \implies  \text{T.S.A\: of \: cylinder} =2 \times 22 \times 5.48 \\  \\ \green{ : \implies  \text{T.S.A\: of \: cylinder} =241.12 \:  {m}^{2} }

Similar questions