Math, asked by amritabajpai209734, 5 months ago

Find the volume , lateral ( curved ) surface area and total surface area of the cylinder whose dimensions are radius of base = 7 cm and height= 25cm​

Answers

Answered by Anonymous
29

Given -

  • Radius of base = 7cm

  • Height = 25cm

To find -

  • Volume, curved surface area and total surface area of cylinder.

Solution -

Volume of cylinder = πr²h

where,

π = \sf\dfrac{22}{7}

r = radius

h = height

On substituting the values -

Volume = πr²h

Volume = \sf\dfrac{22}{7} × (7cm)² × 25cm

Volume = \dfrac{22}{ \cancel{7  \: _{1}} }  \times  { \cancel{49} \:  \: }^{7}  \times 25

volume = 22 × 7cm × 25cm

\longmapsto 3850cm³

Now,

Curved surface area of cylinder = 2πrh

where,

π = \sf\dfrac{22}{7}

r = radius

h = Height

On substituting the values -

CSA = 2πrh

CSA = 2 × \sf\dfrac{22}{ \cancel7}  \times  \cancel{7} \times 25

CSA = 2 × 22 × 25cm

\longmapsto CSA = 1100cm

Now,

Total surface area of cylinder = 2πr(r + h)

where,

π = \sf\dfrac{22}{7}

r = radius

h = Height

On substituting the values -

TSA = 2πr(r + h)

TSA = 2 × \sf\dfrac{22}{ \cancel7}  \times  \cancel{7} (7 + 25)

TSA = 2 × 22(32)cm

TSA = 44 × 32cm

\longmapsto 1408cm³

\therefore The volume, CSA and TSA of cylinder are 3850cm³ , 1100cm and 1408cm³

_______________________________________________

Answered by sangeetagupta1303198
19

volume \: of \: cylinder \:  -  - \pi {r}^{2} h \: \\  -  -  \frac{22}{7}   \times ({7}^{2} ) \times 25 \\  -  -  \frac{22}{7}  \times 49 \times 25 \\  -  - 22 \times 7 \times 25 \\  -  - 3850 {cm}^{3}  \\  \\ lateral \:curved \:  surface \: area -  - 2\pi  rh \:  \\  -  - 2 \times  \frac{22}{7}  \times 7 \times 25 \\  -  - 2 \times 22 \times 25 \\  -  - 44 \times 25 \\  -  - 1100 \\  \\ total \: surface \: area -  - 2\pi   r(r + h) \\  -  - 2  \times \frac{22}{7}  \times 7 \times (7 + 25) \\  -  - 2 \times 22 \times 32 \\  -  - 1408 \\  \\ hope \: it \: helps \: u \:

gudu evening

Similar questions