Math, asked by ramsbhaibgghs5435, 11 months ago

Find the volume lateral surface area and the total surface area of the cuboid whose
length = 15 m, breadth = 6 m and height = 9 dm

Answers

Answered by Pranav789
4

Answer:

answer is given upside please mark as brainliest

Attachments:
Answered by Seafairy
97

Given :

  • Length (l) = 15m
  • Breadth (b) = 6m
  • height (h) = 9dm

To Find :

  • Lateral surface area of cuboid
  • Total surface area if cuboid
  • Volume of cuboid

Formula Applied :

\underline{\boxed{\sf{Lateral \: Surface \: Area_{(Cuboid)}=2h(l+b)}}}

\underline{\boxed{\sf{Total \: Surface \: Area_{(Cuboid)}= 2(lb+bh+hl)}}}

\underline{\boxed{\sf{Volume_{(Cuboid)}=l \times b \times h}}}

Solution :

  • Before substituting the values in formula convert all measures in the same unit (m). Hence we have to change height of the cuboid into metric units.

\boxed{\sf{10dm = 1m}}

\displaystyle\implies {\sf 9dm = \frac{9}{10}m}

\implies {\sf 0.9 metre }

_____________________________________________

1. Lateral Surface Area :

\implies \sf {2h(l+b)}

\implies \sf {2 \times 0.9 (15+6)}

\implies \sf {1.8(21)}

{\boxed{\sf{Lateral \: Surface \: Area_{(Cuboid)}= 37.8 m^2 }}}

_____________________________________________

2. Total Surface Area

\implies \sf {2(lb+bh+hl)}

\implies \sf {2((15\times 6)+(6 \times 0.9)+(0.9 \times 15))}

\implies \sf {2(90+5.4+13.5}

\implies \sf {2(108.9)}

{\boxed{\sf{Total \: Surface \: Area_{(Cuboid)}= 217.8m^2 }}}

_____________________________________________

3. Volume :

\implies \sf {l \times b \times h}

\implies \sf {15 \times 6 \times 0.9}

{\boxed{\sf{Volume _{(Cuboid)}= 81 m^3 }}}

____________________________________________

Required Answer :

1. Lateral Surface area of the Cuboid is {\underline{\sf 37.8 m^2}}

2. Total Surface Area of the Cuboid is {\underline{\sf 217.8 m^2}}

3. Volume Of the Cuboid is {\underline{\sf 81 m^3 }}

____________________________________________

Similar questions