Math, asked by preetiuikey, 9 months ago

find the volume of a cone if the radius of its base is 1.8 cm and its perpendicular height is 4cm.

Answers

Answered by SarcasticL0ve
63

GivEn:-

  • Radius of Cone = 1.8 cm

  • Height of cone = 4 cm

To find:-

  • Volume of cone.

SoluTion:-

GivEn that,

✇ Radius (r) of cone is 1.8cm and its perpendicular height (h) is 4cm.

As we know that,

{\underline{\boxed{\sf{\purple{Volume_{(cone)} = \dfrac{1}{3} \times \pi r^2 h}}}}}

✩ Now, Put the givEn values -

\dashrightarrow\sf V = \dfrac{1}{3} \times \dfrac{22}{7} \times 1.8 \times 1.8 \times 4

\dashrightarrow\sf V = \dfrac{1}{3} \times \dfrac{22}{7} \times 1.8 \times 1.8 \times 4

\dashrightarrow\sf V = \dfrac{1}{3} \times \dfrac{22}{7} \times 12.96

\dashrightarrow\sf V = \dfrac{1}{ \cancel{3}} \times \dfrac{22}{7} \times \cancel{12.96}

\dashrightarrow\sf V = \dfrac{22}{7} \times 4.32

\dashrightarrow\sf \red{V = 13.57\;cm^3}

\therefore\;\sf \underline{Volume\;of\;cone\;is\;13.57\;cm^3}

━━━━━━━━━━━━━━━

Answered by Anonymous
16

Given ,

Radius of cone (r) = 1.8 cm

Height of cone (h) = 4 cm

We know that , the volume of cone is given by

 \boxed{ \sf{Volume = \frac{\pi {(r)}^{2} h}{3} }}

Thus ,

 \sf \mapsto Volume =  \frac{1}{3}  \times  \frac{22}{7}  \times  {(1.8)}^{2}  \times 4 \\  \\\sf \mapsto Volume =   \frac{22 \times 3.24 \times 4}{3 \times 7}  \\  \\\sf \mapsto Volume =   \frac{22 \times 1.08 \times 22}{7}  \\  \\ \sf \mapsto Volume =  \frac{4.32 \times 22}{7}  \\  \\\sf \mapsto Volume =   \frac{95.04}{7}  \\  \\ \sf \mapsto Volume = 13.5 \:  \:  {cm}^{3}

Therefore ,

The volume of cone is 13.5 cm³

Similar questions