Math, asked by jyotidhore252, 9 months ago

find the volume of a cone it the radius of its base is 1.5cm and its perpendicular height is 5cm​

Answers

Answered by Anonymous
7

Answer:

Volume of the cone is 11.79 cm³ (approx).

Step-by-step explanation:

Given :-

  • The radius of the base of the cone is 1.5 cm.
  • Its perpendicular height is 5 cm.

To find :-

  • Volume of the cone.

Solution :-

  • Radius = 1.5 cm
  • Height = 5 cm

Formula used :

{\boxed{\sf{Volume\:of\:cone=\dfrac{1}{3}\pi\:r^2h}}}

  • r = radius
  • h = height

Volume of the cone,

= ⅓ πr²h

= [⅓ × (22/7) ×1.5×1.5×5 ] cm³

= (11×15)/14 cm³

= 165/14 cm³

= 11.79 cm³

Therefore, the volume of the cone is 11.79 cm³(approx).

_______________

Additional information :-

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²
Answered by Anonymous
13

Given :

\bullet\:\:\textsf{Radius \: of \: the \: cone = \textbf{1.5 cm}} \\

\bullet\:\:\textsf{Height of the cone = \textbf{5 cm}} \\  \\

Solution:

:\implies \sf Volume \:  of \:  cone =  \dfrac{1}{3} \pi  {r}^{2} h \\  \\

:\implies \sf Volume \: of \: cone  =  \dfrac{1}{3}  \times  \dfrac{22}{7}  \times (1.5)^{2}  \times 5 \\  \\

:\implies \sf Volume \: of \: cone  =  \dfrac{1}{3}  \times  \dfrac{22}{7}  \times 1.5   \times 1.5 \times 5 \\  \\

:\implies \sf Volume \: of \: cone  = \dfrac{22}{7}  \times 0.5  \times 1.5 \times 5 \\  \\

:\implies \sf Volume \: of \: cone  = \dfrac{22}{7}  \times 3.75\\  \\

:\implies \underline{ \boxed{\sf Volume \: of \: cone  =  11.785 \: cm^{3}}}  \\  \\

\therefore\:\underline{\textsf{The volume of cone is \textbf{11.785}} \:  \sf  {cm}^{3}}. \\

_________________

\boxed{\underline{\underline{\bigstar \: \bf\:Extra\:Brainly\:knowlegde\:\bigstar}}} \\  \\

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2

Similar questions