Math, asked by dheerajkadam47, 4 months ago


Find the volume of a cuboid if its surface area is 208 cm2 and the ratio of length, breadth and height
is 2 : 3: 4.​

Answers

Answered by tt821057
5

Answer:

Thanks

"Please mark it as brainliest."

Attachments:
Answered by llAloneSameerll
26

{ \sf { \huge {\green {   \underline {solution}}}}}

{ \rm{ \large \bold{ \underline{given \colon}}}}

{ \rm{ \large{the \: curve \: surface \: area =  208{cm}^{2} }}}

{ \rm{ \large{let \: the  —}}}

{ \rm{ \large{ \bull length = 2x}}}

{ \rm{ \large{ \bull bredth = 3x}}}

{ \rm{ \large{ \bull height  = 4x}}}

{ \rm{ \large \bold{  \therefore \: curve \: surface \: area = }}} { \rm{2(lb + bh + hl)}}

{ \rm{ \large {208 = { \rm{2 \{(2x.3x) + (3x.4x) + (4x.2x) \}}}}}}

{ \rm{ \large { \implies208 = { \rm{2 \{ {6x}^{2}  +  {12x}^{2}  +  {8x}^{2}  \}}}}}}

{ \rm{ \large { \implies208 =  { \rm{2 \times  {26x}^{2}   }}}}}

{ \rm{ \large { \implies208 =  { \rm{ {52x}^{2}   }}}}}

{ \rm{ \large { \implies {52x}^{2} =  { \rm{ 208   }}}}}

{ \rm{ \large { \implies {x}^{2} =  { \rm{  \dfrac{208}{52}    }}}}}

{ \rm{ \large { \implies {x}^{2} =  { \rm{  4   }}}}}

{ \rm{ \large { \implies {x}=  { \rm{  2  }}}}}

{ \rm{ \large{   \therefore2x = 2 \times 2 = 4}}}

{ \rm{ \large{  3x = 3 \times 2 = 6}}}

{ \rm{ \large{  4x = 4 \times 2 = 8}}}

{ \rm{ \large \bold{  \therefore volume = }}} { \rm{l.b.h}}

{ \rm{ \large {   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 4 \times 6 \times 8}}}

{ \rm{ \large {   volume= 192 {cm}^{3} }}}

Similar questions