English, asked by gargvswati, 4 months ago

Find the volume of a cuboid whose
length
= 3.5 m, b = 2.6 m and h = 90 cm.

Answers

Answered by talahamiste
3

The volume of a cuboid of length l, breadth b, and height h =l×b×h

So, the volume of the cuboid with length =3.5m, breadth =2.6m and height =90cm or 0.9m

=3.5×2.6×0.9=8.19m3

Total surface area of a cuboid of length l, breadth b and height h =2(l×b+b×h+l×h)

So, the total surface area of the cuboid with length =3.5m, breadth =2.6mand height =90cm or 0.9m

=2(3.5×2.6+2.6×0.9+3.5×0.9)=2(9.1+2.34+3.15)=29.18m2 

Answered by shaktisrivastava1234
70

 \Huge \fbox{Answer}

 \Large   \underline{\underline{\frak {\color{red}Given::}}}

  \mapsto\sf{Length \: of \: cuboid = 3.5m}

  \mapsto\sf{Breadth \: of \: cuboid = 2.6m}

  \mapsto\sf{Height \: of \: cuboid = 90cm}

 \Large   \underline{\underline{\frak {\color{blue}To \:  find::}}}

  \leadsto\sf{Volume \: of \: cuboid.}

 \Large   \underline{\underline{\frak {\color{indigo}Formula \:  used::}}}

  \maltese\boxed {\rm{Volume \: of \: cuboid = length(l) \times breadth(b) \times height(h)}} \maltese

 \Large   \underline{\underline{\frak {\color{green}Concept  \: required::}}}

 \rightarrow \sf{1cm =  \frac{1}{100} m}

 \rightarrow \sf{90cm =  \frac{90}{100}m = 0.9m }

 \Large   \underline{\underline{\frak {\color{peru}According \:  to  \: Question::}}}

 { : :\implies{\sf{Volume \: of \: cuboid = length(l) \times breadth(b) \times height(h)}} }

 { : :\implies{\sf{Volume \: of \: cuboid = 3.5m \times 2.6m \times 0.9m}} }

 { : :\implies{\sf{Volume \: of \: cuboid = 8.19 {m}^{3} }} }

 \Large{\underline{\frak {\color{gold}Hence, }}}

 \star{\boxed{\sf{Volume \: of \: cuboid = 8.19 {m}^{3} }}} \star

 \Large   \underline{\underline{\frak {\color{si}Know  \: more::}}}

{ \boxed{ \begin{array}{ |l|l } \hline  \sf Total \: surface \: area \: of \: cubiod& \sf 2(length \times breadth + breadth \times height + height \times length) \\  \hline \sf Lateral \: surface \: area& \sf 2 \times height(length + breadth) \\  \hline \sf Diagonal \: of \: cuboid& \sf  \sqrt{ {length}^{2} +  {breadth}^{2}  +  {height}^{2}  } \\  \end{array}}}

____________________________________________________________________

Attachments:
Similar questions