Math, asked by rajputsatyam514, 11 hours ago

Find the volume of a cuboid whose length, breadth and height are 25 cm, 20 cm and 15 cm respectively ​

Answers

Answered by StarFighter
11

Answer:

Given :-

  • A cuboid whose length, breadth and height is 25 cm, 20 cm and 15 cm respectively.

To Find :-

  • What is the volume of cuboid.

Formula Used :-

\clubsuit Volume Of Cuboid Formula :

\small \bigstar \: \: \sf\boxed{\bold{Volume_{(Cuboid)} =\: Length \times Breadth \times Height}}\: \: \: \bigstar\\

Solution :-

Given :

  • Length = 25 cm
  • Breadth = 20 cm
  • Height = 15 cm

According to the question by using the formula we get,

\small \implies \sf\bold{Volume_{(Cuboid)} =\: Length \times Breadth \times Height}\\

\implies \sf Volume_{(Cuboid)} =\: 25\: cm \times 20\: cm \times 15\: cm\\

\implies \sf Volume_{(Cuboid)} =\: (25 \times 20 \times 15)\: cm^3\\

\implies \sf Volume_{(Cuboid)} =\: (500 \times 15)\: cm^3\\

\implies \sf Volume_{(Cuboid)} =\: (7500)\: cm^3\\

\implies \sf\bold{\underline{Volume_{(Cuboid)} =\: 7500\: cm^3}}\\

\therefore The volume of cuboid is 7500 cm³ .

Answered by TheAestheticBoy
11

Question :-

  • Find the Volume of the Cuboid whose Length , Breadth and Height are 25 cm , 20 cm and 15 cm .

Answer :-

  • Volume of Cuboid is 7500 cm³ .

Explanation :-

Given :-

  • Length of Cuboid = 25 cm
  • Breadth of Cuboid = 20 cm
  • Height of Cuboid = 15 cm

To Find :-

  • Volume of Cuboid = ?

Solution :-

As per the provided information in the given question, Length of Cuboid is 25 cm . Breadth is given 20 cm . Height of Cuboid is given 15 cm . And , we have been asked to calculate the Volume of Cuboid .

For calculating the Volume , we will use Volume of Cuboid formula .

  •  \sf {Volume = Length \times Breadth \times Height}

Therefore , by substituting the given values in the above Formula :-

 \dag \:  \:  \sf{Volume = Length \times Breadth \times Height} \\

 \Longrightarrow \:  \:  \sf{Volume  \: =  \: 25 \:  \times \:  20 \:  \times \:  15} \\

 \Longrightarrow \:  \:  \sf{Volume \:  =  \: 500 \:  \times  \: 15} \\

 \Longrightarrow \:  \:  \bf{Volume \:  =  \: 7500 \:  {cm}^{3} } \\

Hence :-

  • Volume = 7500 cm³ .

 \rule {180pt}{4pt}

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \pmb {\sf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bf{Volume \: of \: Cube =  {side}^{3} } \\  \\ \\ \footnotesize \bf{Volume \: of \: Cuboid = L \times B \times H} \\  \\  \\    \footnotesize \bf{Volume \: of \: Cone = \frac{1}{3}   \: \pi  {r}^{2} h} \\  \\  \\ \footnotesize \bf{Volume \: of \: Cylinder =  \pi {r}^{2}h } \\  \\  \\  \footnotesize  \bf{Volume \: of \: Sphere =  \frac{4}{3 }  \:  \pi {r}^{3} }\end{array}}\end{gathered}\end{gathered}

Similar questions