Math, asked by umarfalahie, 2 months ago

Find the volume of a cylinder whose circumference is 32cm and height is 25cm​

Answers

Answered by SachinGupta01
4

 \large{ \rm \underline{{Given - } }}

 \sf  \dashrightarrow  Circumference  \: of \:  cylinder = 32  \: cm

 \sf  \dashrightarrow  Height  \: of  \: cylinder = 25 \:  cm

 \large{ \rm \underline{{ To \:  find -  } }}

 \sf  \dashrightarrow  Volume \:  of \:  cylinder = \:  ?

 \large{ \rm \underline{{Solution -   } }}

 \sf  \dashrightarrow   \underline{\boxed{  \sf Volume  \: of \:  cylinder = \pi r^2 h }}

 \bf \underline{ Now},

 \sf  \dashrightarrow  Circference \:  of \:  a \:  cylinder = 32  \: cm

 \sf  \dashrightarrow   2 \pi r =32

 \sf  \dashrightarrow   2 \times   \dfrac{22}{7}  \times  r =32

 \sf  \dashrightarrow   r =  \dfrac{ 32 \times 7}{22 \times 2}

 \sf  \dashrightarrow   r =  \dfrac{ 56}{11}

 \sf  \dashrightarrow   r \approx  5.09 \: cm

 \bf \underline{ Now},

 \sf  \dashrightarrow    \sf Volume  \: of \:  cylinder = \pi r^2 h

 \sf  \dashrightarrow    \sf  \dfrac{22}{7}   \times (5.09)^{2}  \times 25

\sf  \dashrightarrow    \sf   \dfrac{22}{7}   \times 25.9081  \times 25

\sf  \dashrightarrow    \sf   \dfrac{22 \times25.9081  \times 25 }{7}

\sf  \dashrightarrow    \sf   \dfrac{14249.455 }{7}

\sf  \dashrightarrow    2035.63

 \bf \underline{ Therefore},

 \boxed{ \sf The \:  volume  \: of  \: the \:  cylinder \:  \approx \: 2035.63 \:  cm ^3}

━━━━━━━━━━━━━━━━━━━━━━━━

\bf \: \underline{Some \: important \: terms}:

\sf \:1. \: Volume \: of \: Cylinder = \pi \: r^{2} \: h

 \sf \: 2. \: Total \: Surface \: Area \: ( TSA ) \: of \: cylinder = 2 \pi \: r ( r + h )

 \sf \:3. \: Curved \: Surface \: Area \: ( CSA ) \: of \: cylinder = 2 \pi \: r \: h

\sf \: 4. \: The \: value \: of \: \pi \: is \: \dfrac{22}{7} \: or \: 3.14 \: in \: decimal.

\bf \: \underline{Some \: other \: formulae}:

\begin{gathered}\begin{gathered}\begin{array}{c|c|c}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area\ formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}\end{gathered}\end{gathered}

Similar questions