Math, asked by nidhiaryash, 11 months ago

Find the volume of a cylinder whose height is equal to twice the radius of its base.​

Answers

Answered by nanisunny195
0

Answer:

volume \: of \: cylinder = \pi \: r { \:}^{2} h \\ by \: problem \\ height = 2 \times radius \\ \pi \times r  { \:\:}^{2} \times \: \:2 \ r \\ \pi2r3

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Volume\:of\:cylinder=6.28r}^{3}\:units^{3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = r\:units} \\ \\ : \implies \text{Height(h) = 2r \:units} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Volume \: of \: cylinder = ? }

• According to given question :

\bold{As \: we \: know \: that} \\ : \implies \text{Volume\: of \: cylinder} =\pi  r^{2}h \\ \\ : \implies \text{Volume\: of \: cylinder} = \frac{ 22}{7} \times {r}^{2}\times 2r\\ \\ : \implies \text{Volume\: of \: cylinder} =3.14 \times 2r^{3} \\ \\ \green{ : \implies \text{Volume\: of \: cylinder} =6.28r^{3}\: {units}^{3}}\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}\\\\ \pink{\circ\: \text{T.S.A\:of\:cylinder}=2\pi r(h+r)}

Similar questions