Math, asked by yasaswininaidu20, 1 month ago

find the volume of a hollow hemispherical shell whose diameter of the internal and external surfaces are 10 cm and 14 cm respectively​

Answers

Answered by Anonymous
27

Step-by-step explanation:

 \sf \underline{ \underline{ \green{Given :}}} \\  \star \:   \sf \: \mathfrak{Diameter \: of \:  interna l  \: surface} \\  \star \: \mathfrak{ Diameter \: of \:  external \: surface}\\  \underline{ \underline{ \red{ \sf \: To \:Find} }} \\  \star  \mathfrak{\: volume \:  of  \: a \:  hollow \:  hemispherical  \: shell} \\ \underline{ \sf \underline{ \purple{Formula  \: Used}}} \\  \sf \: Volume \: of \: the \: hemisphere \\  \leadsto \mathfrak{ \boxed{  \mathfrak{\frac{2}{3}\pi ( {R ^{3}  -   {r}^{3}}})}  } \\  \sf \underline{ \underline{ \blue{Solution}}} \\  \tt \: External \: diameter =  \mathfrak{14 \: cm} \\ \tt \: E xternal \: radius = \mathfrak{  \frac{14}{2}  = 7cm} \\  \\ \tt Internal \: diameter =  \mathfrak{ 5cm} \\ \tt   Internal \: radius =  \mathfrak{ \frac{10}{2} = 5cm} \\  \\   \bf \: Volume \: of \: the \: hollow \: hemispherical \\  \leadsto \:  \mathfrak{ \frac{2}{3} \pi(R ^{3}  -  {r}^{3}) } \\  \leadsto \:   \mathfrak{ \frac{2}{3} ( {7}^{3}  -  {5}^{3} ) } \\  \leadsto \: \mathfrak{  \frac{2}{3} \pi(343 - 125)} \\  \leadsto \:  \mathfrak{ \frac{2}{3} \times  \frac{22}{7}    \times 218} \\  { \boxed{ \red{\mathfrak{ \frac{9592}{21 {cm}^{3}}}} }}

Similar questions