Math, asked by ggbx6406, 8 months ago

Find the volume of a right circular cone, the diameter of whose base is 14cm and the area of curved surface is 550cm squared

Answers

Answered by BrainlySmile
21

Answer- The above question is from the chapter 'Surface Areas and Volumes'.

Concept used: For a right circular cone,

1) Curved surface area (C.S.A.) = πrl

2) Volume =  \frac{1}{3} \pi r^{2} h

3) Diameter = 2 × Radius

4) l = \sqrt {h^{2} + r^{2}}

 \implies l^{2} = h^{2} + r^{2}

Here, r = radius of cone

l = slant height of cone

h = height of cone

Given question: Find the volume of a right circular cone, the diameter of whose base is 14 cm and the area of curved surface is 550 cm².

Solution: For a right circular cone,

Diameter (d) = 14 cm

Radius (r) = d ÷ 2 = 14 ÷ 2 = 7 cm

Curved surface area (C.S.A.) = πrl

550 = πrl

 \dfrac{22}{7} \times 7 \times l = 550

 l = \dfrac{550}{22}

l = 25 cm

 l^{2} = h^{2} + r^{2}

 \implies h^{2} = l^{2} - r^{2}

 h^{2} = 25^{2} - 7^{2}

 h^{2} = 625 - 49

 h^{2} = 576

 h = \sqrt{576}

h = 24 cm

Volume =  \frac{1}{3} \pi r^{2} h

Volume =  \frac{1}{3} . \frac{22}{7} . 7^{2} . 24

Volume =  22 \times 7 \times 8

Volume = 1232 cm³

∴ Required volume of right circular cone = 1232 cm³.

Answered by Anonymous
103

\bf{\underline{\underline{\bigstar\bigstar\: Figure : }}}\\

\:\:

</p><p>\setlength{\unitlength}{0.99cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{h}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{7cm}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(1,4){\sf l}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}\\

\bf{\underline{\underline{\bigstar\bigstar\: Solution : }}}\\

\:\:

\footnotesize{ C.S.A \: of \: cone = { 550cm}^{2}}\\

\footnotesize{\implies  \pi rl = { 550cm}^{2}}\\

\footnotesize{\implies  \dfrac{22}{7} \times \dfrac{14cm}{2} \times l = { 550cm}^{2}}\\

\footnotesize{\implies  \dfrac{22}{7} \times 7cm \times l = { 550cm}^{2}}\\

\footnotesize{\implies  22 \times 1cm \times l = { 550cm}^{2}}\\

\footnotesize{\implies  22cm \times l = { 550cm}^{2}}\\

\footnotesize{\implies    l = \dfrac{{ 550cm}^{2}}{22cm} }\\

\footnotesize{\implies   l = 25cm }\\

\:\:

\rule{200}3

\:\:

\footnotesize{\implies {l}^{2} = {r}^{2} + {h}^{2} }\\

\footnotesize{\implies {l}^{2} - {r}^{2} = {h}^{2} }\\

\footnotesize{\implies {(25cm)}^{2} - {(7cm)}^{2} = {h}^{2} }\\

\footnotesize{\implies {625cm}^{2} - {49cm}^{2} = {h}^{2} }\\

\footnotesize{\implies {576cm}^{2} = {h}^{2} }\\

\footnotesize{\implies \sqrt{{576cm}^{2}} = h}\\

\footnotesize{\implies 24cm = h}\\

\:\:

\rule{200}3

\:\:

\footnotesize{Volume = \pi {r}^{2} \dfrac{h}{3}}\\

\footnotesize{\implies Volume = \dfrac{22}{7} \times {(7cm)}^{2}\times \dfrac{24cm}{3}}\\

\footnotesize{\implies Volume = \dfrac{22}{7} \times {49cm}^{2} \times 8cm}\\

\footnotesize{\implies Volume = 22 \times {7cm}^{2} \times 8cm}\\

\footnotesize{\implies Volume = 22 \times {56cm}^{3} }\\

\footnotesize{\implies Volume =  {1232cm}^{3} }\\


Vamprixussa: Awesome !
Similar questions