Find the volume of a right circular cone whose area of the base is 36π cm² and slant height is 10 cm.
Answers
Answered by
3
Solution:
Given:
Area of base = 36π cm²
Slant height (l) = 10 cm
Area of base = πr²
36π = πr²
36 = r²
r = √36
r = √ 6× 6= 6
r = 6 cm
Slant height (l)²= r²+h²
10² = 6² + h²
100 = 36 + h²
100 -36 = h²
64 = h²
h= √ 64 = √ 8×8
h= 8 cm
height (h) = 8 cm
Volume of cone= ⅓ πr²h
= ⅓ ×( 22/7) × 6² × 8
= ⅓ × (22/7) × 36 × 8
=( 22× 12 × 8)/7
=( 22× 96 ) /7
= 2112/7 = 301.71 cm³
Volume of cone = 2112/7 = 301.71 cm³
==================================================================================
Hope this will help you.....
Given:
Area of base = 36π cm²
Slant height (l) = 10 cm
Area of base = πr²
36π = πr²
36 = r²
r = √36
r = √ 6× 6= 6
r = 6 cm
Slant height (l)²= r²+h²
10² = 6² + h²
100 = 36 + h²
100 -36 = h²
64 = h²
h= √ 64 = √ 8×8
h= 8 cm
height (h) = 8 cm
Volume of cone= ⅓ πr²h
= ⅓ ×( 22/7) × 6² × 8
= ⅓ × (22/7) × 36 × 8
=( 22× 12 × 8)/7
=( 22× 96 ) /7
= 2112/7 = 301.71 cm³
Volume of cone = 2112/7 = 301.71 cm³
==================================================================================
Hope this will help you.....
Similar questions