Math, asked by poonam709, 3 months ago

Find the volume of a sphere having radius 5 cm​

Answers

Answered by yashita7749
1

Answer:

V≈523.6

Step-by-step explanation:

V=4

3πr3=4

3·π·53≈523.59878

Answered by BrainlyRish
2

Given : The Radius of Sphere is 5 cm .

Exigency to find : Volume of Sphere .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Finding Volume of Sphere :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Volume_{(Sphere)} \:: \dfrac{4}{3} \pi \times r^3 }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here r is the Radius of Sphere & \pi = \dfrac{22}{7}\:\:or\:\:3.14\:

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \longmapsto \sf Volume \:\:= \dfrac{4}{23} \times \pi \: 5^3 \\\\

\qquad \longmapsto \sf Volume \:\:= \dfrac{4}{3} \times \pi \times 125 \\\\

\qquad \longmapsto \sf Volume \:\:= \dfrac{4}{3} \times \dfrac{22}{7} \times \: 125 \\\\

\qquad \longmapsto \sf Volume \:\:= \dfrac{4}{3} \times \cancel {\dfrac{22}{7}} \times \: 125 \\\\

\qquad \longmapsto \sf Volume \:\:= \dfrac{4}{3} \times 3.14 \times \: 125 \\\\

\qquad \longmapsto \sf Volume \:\:= \dfrac{4}{\cancel {3}} \times \cancel {392.5} \\\\

\qquad \longmapsto \sf Volume \:\:= 4\times 130.83 \\\\

\qquad \longmapsto \frak{\underline{\purple{ Volume \approx 523.6   cm^3 }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Volume \:of\:Sphere \:is\:\bf{\approx  523.6\: cm^3}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth

\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth)

\qquad \leadsto \sf Area_{(Square)} = Side \times Side

\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side

\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )

\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height

\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height

\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions