Math, asked by Rina86169, 16 days ago

Find the volume of a sphere ,if its surface area is 154 sq.cm.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that radius of sphere = r cm

Given that,

\rm \: Surface Area_{(Sphere)} = 154 \\

\rm \: 4\pi {r}^{2} \:  =  \: 154 \\

\rm \: 4 \times  \dfrac{22}{7} \times   {r}^{2} \:  =  \: 154 \\

\rm \: 4 \times  \dfrac{1}{7} \times   {r}^{2} \:  =  \: 7 \\

\rm \:  {r}^{2} = \dfrac{7 \times 7}{4}  \\

\rm \:  {r}^{2} = \dfrac{7 \times 7}{2 \times 2}  \\

\rm\implies \:r \:  =  \: \dfrac{7}{2} \: cm \\

Now,

\rm \: Volume_{(Sphere)} \:  \\

\rm \:  =  \: \dfrac{4}{3} \pi {r}^{3}  \\

\rm \:  =  \: \dfrac{4}{3} \times  \frac{22}{7} \times  \frac{7}{2} \times  \frac{7}{2} \times  \frac{7}{2} \\

\rm \:  =  \: \dfrac{11 \times 49}{3} \\

\rm \:  =  \: \dfrac{539}{3} \\

\rm \:  \approx \: 179.67 \:  {cm}^{3}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:Volume_{(Sphere)} =  \frac{539}{3}   \approx \: 179.67 \:  {cm}^{3} \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by alibabafayez
0

Answer:

V≈179.7

Step-by-step explanation:

Similar questions