Math, asked by sindhubhuvad, 3 months ago

find the volume of a sphere where radius is 9 cm [π=3.14]​

Answers

Answered by Nexhell
0

Answer:

3052.08 cm³

Step-by-step explanation:

VOLUME OF A SPHERE=3/4πR³

4/3*3.14*729. (9)³=729

=4*3.14*243

=3052.08 cm³

Answered by AestheticSoul
11

Answer

  • Volume of the sphere = 3,052.08 cm³

Explanation :-

Given

  • Radius of a sphere = 9 cm

To find

  • Volume of a sphere

Knowledge required :-

  • Formula to calculate volume of sphere :-

⠀⠀   \pmb{Volume~of~sphere~ = \dfrac{4}{3} \pi{r}^{3}}

where,

  • Take π = 3.14
  • r = radius of the sphere

Solution

Substitute the given values in the formula,

: \implies  \sf volume =  \dfrac{4}{3} \pi  {r}^{3}

 \\ : \implies  \sf  volume = \dfrac{4}{3}  \times 3.14 \times   {9}^{3}

 \\ : \implies  \sf  volume = \dfrac{4}{3}  \times 3.14 \times 9 \times 9 \times 9

 \\ : \implies  \sf  volume = \dfrac{4}{ \not3}  \times 3.14 \times  \not9 \times 9 \times 9

 \\ : \implies  \sf  volume = 4  \times 3.14  \times 9 \times 9

 \\ :  \implies  \red{\pmb{\underline{volume \: of \: the \: sphere = 3,052.08 \: cm^{3} }}} \:  \:  \:  \bigstar

━━━━━━━━━━━━━━━

⠀⠀⠀Some related formulae :-

  • Surface area of sphere = 4πr²
  • Volume of cylinder = πr²h
  • Volume of cone = 1/3 πr²h
  • Curved surface area of cone = πrl
  • Total surface area of cone = πrl + πr²h
  • Total surface area of cylinder = 2πrh + 2πr²
  • Area of circle = πr²
  • Circumference = 2πr
  • Diameter = 2 × Radius
  • Radius = Diameter/2
Similar questions