Math, asked by amanda7237, 4 months ago

Find the volume of a sphere whose surface area is 154 cm²

Answers

Answered by Anonymous
2

Given,

Surface area of sphere is 154 cm^2

Surface area of sphere = 4πr^2

4 \times  \frac{22}{7}  \times  {r}^{2}  = 154 \\   {r}^{2}  =  \frac{154}{4}  \times  \frac{7}{22}  \\  {r}^{2}  =  \frac{49}{4}  \\ r =  \sqrt{ \frac{49}{4} }  \\ r =  \frac{7}{2} \\ r = 3.5cm \\

Volume of sphere = 4/3πr^3

 \frac{4}{3}  \times  \frac{22}{7}  \times  {3.5}^{3}  \\  \frac{88}{21}  \times 42.875 = 179.67 {cm}^{3}

Therefore the volume of sphere is 179.67cm^3.

Answered by MaIeficent
14

Given:-

The surface area of the sphere = 154cm²

To Find:-

The volume of the sphere.

Solution:-

Let the radius of the sphere be " r "

Surface area of the sphere = 4πr²

\sf \implies 4 \pi r^2 = 154

\sf \implies 4\times \dfrac{22}{7}\times r^2 = 154

\sf \implies  \dfrac{88}{7}\times r^2 = 154

\sf \implies  r^2 = 154 \times \dfrac{7}{88}

\sf \implies  r^2 =  \dfrac{1078}{88}

\sf \implies  r^2 =  12.25

\sf \implies  r = \sqrt{12.25}

\sf \implies  r = 3.5cm

\sf \therefore Radius \: of \: the \: sphere = 3.5cm

\sf Volume \: of \: the \: sphere = \dfrac{4}{3}\pi r^3

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{4}{3} \times  \dfrac{22}{7}   \times (3.5)^3

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   \dfrac{88}{21}   \times 42.875

\sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  179.67cm^3

\underline{\boxed{\therefore \textsf{\textbf{Volume \: of \: the \: sphere = 179.67}}\bf cm^3}}

Similar questions