Math, asked by awashsaleh22, 10 months ago

Find the volume of cone

Attachments:

Answers

Answered by Asterinn
7

In the given figure :-

  • diameter of cone = 7 cm

  • Height of cone = 4 cm

we know that :-

 \implies \: radius  =  \dfrac{diameter}{2}

Therefore radius of cone :-

\implies \: radius  =  \dfrac{7}{2}  \: cm

volume \: of \: cone(v) =  \dfrac{1}{3}  \times \pi \times  {r}^{2}  \times h

Now put :-

  • r = 7/2
  • π = 22/7
  • h = 4

 \implies \: v =  \dfrac{1}{3}  \times  \dfrac{22}{7} \times  { (\dfrac{7}{2} )}^{2}  \times 4

\implies \: v =  \dfrac{1}{3}  \times  \dfrac{22}{7} \times  { \dfrac{7}{2} }   \times\dfrac{7}{2}  \times 4

\implies \: v =  \dfrac{1}{3}  \times {22} \times {7}

\implies \: v =  \dfrac{154}{3}   \:  {cm}^{3}

Answer :

 \dfrac{154}{3}  {cm}^{3} (or \: 51.3{cm}^{3})

____________________

Learn more :

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = (4/3)πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions