Math, asked by Mister360, 3 months ago

Find the volume of cone whose
Diameter = 20 cm
Height = 100 mm
take \pi as 3.14

Note - Kindly watch the question properly

Answers

Answered by kailashmannem
112

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  • Diameter = 20 cm

  • Height = 100 mm

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • Volume of the Cone

 \Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  • Height of the cone = 100 mm

  • Converting the given units into cm,

  • 10 mm  \longrightarrow 1 cm

  • 100 mm  \longrightarrow x cm

  • x cm =  \sf \dfrac{100 \: * \: 1}{10}

  • x cm =  \sf \dfrac{10\cancel{0}}{1\cancel{0}}

  • x cm =  \sf \dfrac{10}{1}

Height of the cone = 10 cm.

  • Diameter of the cone = 20 cm.

  • Radius = ?

  • Radius =  \sf \dfrac{Diameter}{2}

  • Radius =  \sf \dfrac{20}{2}

  • Radius =  \sf \dfrac{\cancel{20}}{\cancel{2}}

  • Radius =  \sf \dfrac{10}{1}

Radius of the cone = 10 cm.

  • Volume of the cone = ?

 \boxed{\pink{\sf Volume \: of \: the \: cone \: = \: \dfrac{1}{3} \pi r^{2} h \: units^{3}}}

  • Substituting the values,

 \sf Volume \: of \: the \: cone \: = \: \dfrac{1}{3} \: * \: 3.14 \: * \:  10^{2} \: * \: 10 \: cm^{3}

 \sf Volume \: of \: the \: cone \: = \: \dfrac{1}{3} \: * \: 3.14 \: * \:  100 \: * \: 10 \: cm^{3}

 \sf Volume \: of \: the \: cone \: = \: \dfrac{1}{3} \: * \: 3.14 \: * \:  1000 \: cm^{3}

 \sf Volume \: of \: the \: cone \: = \: \dfrac{1}{3} \: * \: 3140 \: cm^{3}

 \sf Volume \: of \: the \: cone \: = \: \dfrac{3140}{3} \: cm^{3}

  • Therefore,

  •  \underline{\boxed{\therefore{\blue{\sf Volume \: of \: the \: cone \: = \: 1,046.66 \: cm^{3}.}}}}

 \Large{\bf{\purple{\mathfrak{\dag{\underline{\underline{More \: Information:-}}}}}}}

  • LSA of a cone = πrl units²

  • TSA of a cone = πr (r + l) units²

  • Volume of a cone =  \sf \dfrac{1}{3} \pi r^{2} h \: units^{3}
Answered by Anonymous
55

Given :-

Diameter = 20 cm

Height = 100 mm

To Find :-

Volume of cone

Solution :-

We know that

Radius = Diameter/2

Radius = 20/2

Radius = 10 cm

And

1 cm = 10 mm

100 mm = 100/10 = 10 cm

So,

\sf Volume_{(cone)} = \dfrac{1}{3} \times \pi \times r^2h

\sf Volume =\dfrac{1}{3} \times 3.14 \times 10^2 \times 10

\sf Volume = \dfrac{1}{3} \times 3.14 \times 100\times 10

\sf Volume = \dfrac{1}{3} \times 314 \times 10

\sf Volume = \dfrac{1}{3} \times 3140

\sf Volume = 1046.66 \; cm^3

Similar questions