Math, asked by shivanikirshanwal667, 6 months ago

find the volume of cone with radius 6cm height 7cm

Answers

Answered by stephensrvspmcbse
2

Answer:

Volume of the cone = 264 cm^3

Step-by-step explanation:

Volume of a cone = 1/3 * pi * r^2 * h

Volume of a cone = 1/3 * 22/7 * 6*6*7

Volume of a cone = 22*2*6

Volume of a cone = 22*12

Volume of a cone = 264 cubic cm.

Answered by Anonymous
44

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm} \qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{7 cm}}\put(3,2){\line(0,2){4.5}}\put(1.4,1.6){\sf{6 cm}}\qbezier(.185,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}

⠀⠀

\bf GivEn\begin{cases} & \sf{Height\;of\;cone = \bf{7\;cm}}  \\ & \sf{Radius\;of\;cone = \bf{6\;cm}}  \end{cases}

We have to find, Volume of cone.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\star\;{\underline{\frak{We\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\purple{Volume_{\;(cone)} = \dfrac{1}{3} \pi r^2 h}}}}\\ \\

\star\;{\underline{\frak{Putting\;values,}}}\\ \\

:\implies\sf \dfrac{1}{ \cancel{3}} \times \dfrac{22}{ \cancel{7}} \times \cancel{6} \times 6 \times \cancel{7}\\ \\

:\implies\sf 22 \times 2\times 6\\ \\

:\implies{\boxed{\frak{\pink{264\;cm^3}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Volume\;of\;cone\;is\; \bf{264\;cm^3}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\qquad\boxed{\underline{\underline{\green{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:CSA = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA\\{\quad\:\:\:\qquad=\pi r^2+\pi rl}\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\end{minipage}}

Similar questions