Math, asked by gazisadataala, 5 months ago

find the volume of cuboid is if its length is 6m , breadth is 25 cm and height is 15 CM.

Answer in step by step.​

Answers

Answered by kanishka319
0

Step-by-step explanation:

Volume of cuboid= LBH

Volume of cuboid= LBHTHEN,

Volume of cuboid= LBHTHEN,LENTH=6CM

Volume of cuboid= LBHTHEN,LENTH=6CMBREADTH =25CM

Volume of cuboid= LBHTHEN,LENTH=6CMBREADTH =25CMHEIGHT=15CM

Volume of cuboid= LBHTHEN,LENTH=6CMBREADTH =25CMHEIGHT=15CMSO,

Volume of cuboid= LBHTHEN,LENTH=6CMBREADTH =25CMHEIGHT=15CMSO,=6CM*25CM*15CM

=2250

Answered by Intelligentcat
14

★ Given :-

  • Length of the Cuboid = 6m
  • Breadth of cuboid = 25 cm
  • Height of the Cuboid = 15 cm

★ Have to Find :-

  • Find the Volume of the Cuboid

★ Solution :-

Diagram :-

\setlength{\unitlength}{0.74 cm}\begin{picture}\thicklines\put(5.6,5.4){\bf A}\put(11.1,5.4){\bf B}\put(11.2,9){\bf C}\put(5.3,8.6){\bf D}\put(3.3,10.2){\bf E}\put(3.3,7){\bf F}\put(9.25,10.35){\bf H}\put(9.35,7.35){\bf G}\put(3.5,6.1){\sf 25\:cm}\put(7.7,6.3){\sf 6\:m}\put(11.3,7.45){\sf 15\:cm}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

We know the formula for finding volume of cuboid.

Volume of Cuboid = length × Breadth × Height

From given we know ,

★ length = 6m { converting in cm = 600 cm}

★ Breadth = 25 cm

★ Height = 15 cm

★ Volume of Cuboid ➤ 600 × 15 × 25 = 225000cm.

Therefore,

Volume of cuboid is 225000 cm or 2250 metres.

___________________________

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}


Cosmique: Splendid :3
Similar questions