Math, asked by 124Harsh, 4 months ago

find the volume of cylinder whose diameter is 4.2 cm and height is 18 ​

Answers

Answered by BrainlyMessi10
0

Step-by-step explanation:

Volume of cylinder is given by the formula

V= pi×r^2×h

V= pi× 4.41×18

V=79.38cm^3

Answered by mathdude500
2

\large\underline\green{\bold{ \sf \: ANSWER }}

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{Diameter_{(cylinder)} = 4.2 \: cm} \\ &\sf{Height_{(cylinder)} = 18 \: cm} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \:To\:find - \begin{cases} &\sf{Volume_{(cylinder)}}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given that

  • Diameter of cylinder = 4.2 cm

  • Radius of cylinder, r = 2.1 cm

  • Height of cylinder, h = 18 cm

We know,

  • Volume of cylinder is given by

\rm :\implies\: \boxed{ \pink{ \bf \:Volume_{(cylinder)}  \:  =  \tt \:\pi \:  {r}^{2}h  }}

So,

on substituting the values of r and h, we get

\rm :\implies\:Volume_{(cylinder)} \:  = \dfrac{22}{7}  \times 2.1  \times 2.1 \times 18

 \boxed{ \red{\rm :\implies\:Volume_{(cylinder)} \:  =  \: 249.48 \:  {cm}^{2} }}

More information :-

 \boxed{ \purple{ \large{ \rm \:  formulas}}}

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions