Math, asked by Kabir2345, 10 months ago

Find the volume of hemisphere whose radius 126

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Volume\:of\:hemisphere=4187453.76\:unit^{3}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Radius \: of \: hemisphere = 126 \: unit \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Volume \: of \: hemisphere = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: hemisphere =  \frac{2}{3} \pi \:  {r}^{3}  \\  \\ \tt:  \implies Volume \: of \: hemisphere =  \frac{2}{3}  \times  3.14 \times  {(126)}^{3}  \\  \\ \tt:  \implies Volume \: of \: hemisphere =  \frac{2}{3}  \times 3.14 \times 126 \times 126 \times 126 \\  \\  \green{\tt:  \implies Volume \: of \: hemisphere = 4187453.76 \:  {unit}^{3}}  \\  \\  \blue{ \bold{Some \: related \: formula : }} \\   \orange{\tt \circ \: T.S.A\: of \: hemisphere = 3\pi {r}^{2} } \\  \\ \orange{\tt \circ \: T.S.A\: of \:sphere = 4\pi {r}^{2} } \\  \\ \orange{\tt \circ \: Volume \: of \: hemisphere =  \frac{4}{3} \pi {r}^{3} }

Answered by Saby123
2

 \tt{\huge{\orange {Hello!!! }}} B.Q

QUESTION :

Find the volume of hemisphere whose radius is 126 cm .

SOLUTION :

We know That :

 \tt{\purple{\leadsto{Volume \: Of \: A \: Hemisphere = \dfrac{2}{3} \pi \: {r}^{3} }}}

 \tt{\mapsto{\red{Given \: - \: r = 26 \: cm. }}}

Substituting this value into the above Equation ,

 \tt{\blue{\leadsto{ \dfrac{2}{3} \pi \: {(126)}^{3} = \dfrac{2}{3} \times 3.14 \times 126 \times 126 \times 126 = 4187453.76 \: {cm}^3  }}}

___________

A n S w E r :

The volume of the required hemisphere is 4187453.76 cm^3.

Similar questions