find the volume of rectangular solids whose dimensions are Length 15 Breadth 12 thickness 75
Answers
Answered by
4
Given :-
Length = 15 units
Breadth = 12 units
Thickness/Height = 75 units
To find :-
- Volume of cuboid
Volume :-
Volume = length × breadth × height (or) Area of base × height
Substituting the values,
Volume = 15 × 12 × 75
Volume = 13,500 units³
HOW TO FIND T.S.A AND L.S.A :-
Total surface area :-
Total surface area = 2[(length×breadth)+(breadth×height)+(length×height)]
Substituting the values,
T.S.A = 2[(15×12)+(12×75)+(75×15)]
T.S.A = 2(180+900+1125)
T.S.A = 2(2205)
Total surface area = 4410 units²
Lateral surface area :-
Lateral surface area = 2hl + 2bh =≥ 2h(l+b) (or) Perimeter of base × height
Substituting the values,
L.S.A = 2 × 75 (12+15)
L.S.A = 150(27)
Lateral surface area = 4050 units²
Some more formulas :-
Volume of cube = a³
Total surface area of cube = 6a²
Lateral surface area of cube = 4a²
Volume of cylinder = πr²h
Total surface area of cylinder = 2πrh + 2πr² =≥ 2πr(h+r)
Lateral surface area of cylinder = 2πrh
Similar questions