Math, asked by hiteshthakur3824, 1 year ago

Find the volume of sphere whose surface area is 154cmsquare

Answers

Answered by Anonymous
2
Hey there !!

Given that, surface area of sphere = 154 cm²

4 πr² = 154
4 × 22 / 7 × r² = 154
r² = 154×7 / 4×22
r² = 1078 / 88
r² = 539 / 44
r² = 12.25
r = √12.25
r = 3.5 cm

Volume of sphere = 4πr³
= 4/3 ×22/7 × 3.5 × 3.5 × 3.5
= 179.67 cm³
Answered by ButterFliee
4

\huge{\underline{\underline{\mathrm{\red{GIVEN:-}}}}}

  • Surface area of sphere = 154 cm²

\huge{\underline{\underline{\mathrm{\red{NEED\:TO\:FIND:-}}}}}

Find the Volume of Sphere = ?

\huge{\underline{\underline{\mathrm{\red{FORMULA \:USED:-}}}}}

\large{\boxed{\bf{\blue{Volume \: of \: sphere = \frac{4}{3}π{r}^{3}}}}}

\large{\boxed{\bf{\blue{Surface\:area \: of \: sphere = 4π{r}^{2}}}}}

\huge{\underline{\underline{\mathrm{\red{SOLUTION:-}}}}}

We have given that, surface area of sphere is 154 cm², we need to find the radius of the sphere

Putting the given values in the formula, we get

\implies\bf{154 = 4\times\frac{22}{7}\times{r}^{2}}

\implies\bf{154 = \frac {88}{7}\times{r}^{2}}

\implies\bf{ {r}^{2} =\large \frac{154\times7}{88}}

\implies \cancel\dfrac{1078}{88}

\implies\bf{r= \sqrt{\frac{49}{4}}}

\implies\large\bf\green{r = \frac{7}{2}}

Now, we have to find the Volume of Sphere

Putting the values in formula, we get

\implies\large\bf{Volume = \frac{4}{3}\timesπ{r}^{3}}

\implies\bf{Volume = \frac{4}{3}\times\frac{22}{7}\times\frac{7}{2}\times\frac{7}{2}\frac{7}{2}}

\implies\bf{Volume =\large \frac{30184}{168}}

\implies\bf{Volume = }\cancel\dfrac{30184}{168}

\implies\large\bf\green{Volume = 179.66\:{cm}^{3}}

Thus, the Volume of sphere is 179.66 cm³

\large{\underline{\underline{\mathrm{\red{FINAL\:ANSWER:-}}}}}

\huge{\boxed{\boxed{\mathrm{\green{Volume = 179.66\:{cm}^{3}}}}}}

Attachments:
Similar questions