Math, asked by Mister360, 1 month ago

Find the volume of spherical ball whose diameter is 6 m

Answers

Answered by tennetiraj86
11

Step-by-step explanation:

Given:-

The diameter of a spherical ball is 6m

To find:-

Find the volume of spherical ball whose diameter is 6 m

Solution:-

Diameter of the spherical ball = 6 m

d= 6 m

Radius of the spherical ball = Diameter/2

=>r = 6/2

=>r = 3 m

Radius of the given spherical ball = 3 m

Volume of a sphere = (4/3)πr^3 cubic units

Volume of the spherical ball =

=> (4/3)×(22/7)×3^3 m^3

=>(4/3)×(22/7)×3×3×3

=>(4/3)×(22/7)×27

=>(4×22×27)/(3×7)

=>(4×22×9)/7

=>792/7

=>113.14...

Volume of the given spherical ball = 113.14 m^3

Answer:-

Volume of the given spherical ball = 113.14 m^3

Used formula:-

Volume of a sphere = (4/3)πr^3 cubic units

Where r is the radius and π=22/7

Answered by DüllStâr
163

Digram:-

 \\\\

\setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(-2.3,0)(0,-1)(2.3,0)\qbezier(-2.3,0)(0,1)(2.3,0)\thinlines\qbezier (0,0)(0,0)(0.2,0.3)\qbezier (0.3,0.4)(0.3,0.4)(0.5,0.7)\qbezier (0.6,0.8)(0.6,0.8)(0.8,1.1)\qbezier (0.9,1.2)(0.9,1.2)(1.1,1.5)\qbezier (1.2,1.6)(1.2,1.6)(1.38,1.9)\put(0.2,1){\bf 3m}\end{picture}

 \\ \\

Given:-

 \\

  • Diameter of spherical ball = 6m

 \\

To find:-

 \\

  • Volume of spherical ball

 \\

Solution:-

 \\

First Let's convert diameter into radius.

 \\

we know:-

 \\

 \bigstar \boxed{ \rm{}diameter = 2 \times radius}

 \\

  \dashrightarrow\sf{}diameter = 2 \times radius

 \\  \\

  \dashrightarrow\sf{}6 = 2 \times radius

 \\  \\

  \dashrightarrow\sf{} 2 \times radius = 6

 \\  \\

  \dashrightarrow\sf{}radius = \dfrac{6}{2}

 \\  \\

  \dashrightarrow\sf{}radius = \dfrac{3 \times 2}{2}

 \\  \\

  \dashrightarrow\sf{}radius = \dfrac{3 \times \cancel2}{\cancel2}

 \\  \\

  \dashrightarrow\sf{}radius =3 \times 1

 \\  \\

  \dashrightarrow \underline{ \boxed{\sf{}radius =3 \: m}}

 \\  \\

Finally Let's find volume of spherical ball:

 \\  \\

We know:

 \\  \\

 \bigstar \boxed{ \rm{}Volume \: of \: sphere =  \frac{4}{3} \pi {r}^{3} }

 \\  \\

By using this formula we can find value of volume of sphere

 \\  \\

 \dashrightarrow\sf{}Volume \: of \: sphere =  \dfrac{4}{3} \pi {r}^{3}

 \\  \\

 \dashrightarrow\sf{}Volume \: of \: sphere =  \dfrac{4}{3} \times  \dfrac{22}{7} \times {3}^{3} \\

 \\  \\

 \dashrightarrow\sf{}Volume \: of \: sphere =  \dfrac{4}{3} \times  \dfrac{22}{7} \times 3 \times 3 \times 3 \\

 \\  \\

 \dashrightarrow\sf{}Volume \: of \: sphere =  \dfrac{4}{\cancel3} \times  \dfrac{22}{7} \times \cancel3 \times 3 \times 3 \\

 \\  \\

 \dashrightarrow\sf{}Volume \: of \: sphere = \dfrac{22 \times 3 \times 3 \times 4}{7} \\

 \\  \\

 \dashrightarrow\sf{}Volume \: of \: sphere = \dfrac{792}{7} \\

 \\  \\

 \dashrightarrow \underline{ \boxed{\sf{}Volume \: of \: sphere =113.14 \: m} }\\

 \\  \\

 \therefore \underline{ \textsf{Volume of sphere = \textbf{113.14 m(approx)}}}\\

Attachments:
Similar questions