Math, asked by aarohishinde102, 11 months ago

find the volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6) and D(1 , 2, 3)​

Answers

Answered by Anonymous
142

AnswEr :

⋆ Reference of Image in Attachment :

Given Vertices of Tetrahedron are :

\bold{Vertices} \begin{cases}\sf{A=(3, 7, 4)}\\ \sf{B=(5, -2, 3)}\\ \sf{C=(-4, 5, 6)}\\ \sf{D=(1, 2, 3)}\end{cases}

Finding the Vector of Sides :

\sf\vec{AB} = \vec{B} - \vec{A} \\ \:  \:  \:  \:  \:  \:  \: = \sf(5 - 3)\hat{\imath} + ( - 2 - 7)\hat{\jmath} + (3 - 4)\hat{k}\\ \:  \:  \:  \:  \:  \:  \:  = 2\hat{\imath} - 9\hat{\jmath} - \hat{k}

\sf\vec{AC} = \vec{C} - \vec{A} \\ \:  \:  \:  \:  \:  \:  \: = \sf(-4 - 3)\hat{\imath} + (5 - 7)\hat{\jmath} + (6 - 4)\hat{k}\\ \:  \:  \:  \:  \:  \:  \:  =  - 7\hat{\imath} - 2\hat{\jmath}  + 2 \hat{k}

\sf\vec{AD} = \vec{D} - \vec{A} \\ \:  \:  \:  \:  \:  \:  \: = \sf(1 - 3)\hat{\imath} + (2 - 7)\hat{\jmath} + (3 - 4)\hat{k}\\ \:  \:  \:  \:  \:  \:  \:  =  - 2\hat{\imath} - 5\hat{\jmath} - \hat{k}

Now we will find the Volume :

\leadsto \rm Volume = \dfrac{1}{6} |\vec{AB} \: \vec{AC} \: \vec{AD}|

\leadsto \rm Volume = \dfrac{1}{6}\left|\begin{array}{c c c}2 & - 9 & - 1\\- 7 &  - 2 & 2\\- 2 & - 5 & - 1\end{array}\right|

\leadsto \rm Volume = \dfrac{1}{6}|2{(-2*-1) - (2*-5)} - (-9){(-7*-1) - (2*-2)} + (-1){(-7*-5) - (-2*-2)}|

\leadsto \rm Volume = \dfrac{1}{6}|2(2 + 10) + 9(7 + 4) - 1(35 - 4)|

\leadsto \rm Volume = \dfrac{1}{6}|2(12)+9(11)-1(31)|

\leadsto \rm Volume = \dfrac{1}{6}|24+99-31|

\leadsto \rm Volume = \dfrac{1}{\cancel6}\times\cancel{92}

\leadsto\boxed{\sf Volume =15.33 \:  {unit}^{3} }

Volume of Tetrahedron is 15.33 unit³.

_________________________________

The Method to find any Determinant :

\left|\begin{array}{c c c}a & b & c\\d & e & f\\g & h & i\end{array}\right|

|A| = a(ei − fh) − b(di − fg) + c(dh − eg)

Attachments:
Answered by RvChaudharY50
56

Question :---

  • we have to find volume of tetrahedron whose vertices are A(3, 7, 4), B(5, -2, 3), C(-4, 5, 6) and D(1 , 2, 3) ???

Formula used :----

  • The volume of Tetrahedron is equal to the 1/6 of the absolute value of the triplet product ..

Given vertices :---

  • A(3, 7, 4)
  • B(5, -2, 3)
  • C(-4, 5, 6)
  • D(1 , 2, 3)

AB = B-A = (5-3)i + (-2-7)j + (3-4)k = 2i -9j -k

AC = C-A = (-4-3)i + (5-7)j + (6-4)k = -7i -2j +2k

AD = D-A = (1-3)i + (2-7)j + (3-4)k = -2i -5j -1 k

Now Volume = 1/6 ∆ [ AB AC AD ]

Volume =   \frac{1}{6}  [ 2( 2- ( - 10)) + 9(7 - ( - 4)) - 1(35 - 4)) ]  \\  \\ Volume =   \frac{1}{6}  [2 \times  12 +  9 \times 11  - 31] \\  \\  Volume \: =   \frac{1}{6}  [24 + 99 - 31]  \\  \\Volume =   \frac{1}{6}[ \: 92]  \:  \\  \\ Volume =  \frac{46}{3}  \: units^{3}

So volume of tetrahedran will be (46/3) cubic units ..

(Hope it helps you)

Similar questions