English, asked by ismailsarwar71, 1 year ago

Find the volume of the cone for a cone having a slant height of 14 cm and radius of the base is 4 cm.​

Answers

Answered by varadad25
1

Answer:

slant \: height \: (l) = 14 \: cm \\ radius \: of \: base \:  \: (r) = 4 \: cm \\  {l}^{2}  =   {r}^{2}  +  {h }^{2}  \\  {14 }^{2}  =  {4}^{2}  +  {h}^{2}  \\ 196 = 16 +  {h}^{2}  \\ 196 - 16 =  {h }^{2}  \\  {h }^{2}  = 180 \\ h =  \sqrt{180 }  \:  \:  \:  \:  \:  \:  \:  \: taking \: squre \: root \:  \\ h =  \sqrt{36 \times 5}  \\ h = 6 \sqrt{5}  \: cm \\ volume \: of \: cone \:  =  \frac{1}{3}  \times \pi {r}^{2} h \\  \:  \:  \:  =  \frac{1}{3}  \times  \frac{22}{7}  \times 4 \times 4 \times 6 \sqrt{5}  \\  = 224.45 \:  {cm}^{3}  \\ voume \: of \: cone \: is \: 224.45 \:  {cm}^{3}

Similar questions