Math, asked by kavya14914, 19 hours ago

FIND THE VOLUME OF THE CONE WHOSE RADIUS = 4 CM AND HEIGHT = 5 CM
OPTION A - 12π CM³
OPTION B - 14π CM³
OPTION C - 18π CM³
OPTION D - 20π CM³

CHOOSE THE CORRECT OPTION WITH EXPLAINATION

Answers

Answered by StarFighter
8

Answer:

Given :-

  • A volume whose radius is 4 cm and height is 5 cm.

To Find :-

  • What is the volume of the cone.

Formula Used :-

\clubsuit Volume of Cone Formula :

\bigstar \: \: \sf\boxed{\bold{Volume_{(Cone)} =\: \dfrac{1}{3}{\pi}r^2h}}\: \: \: \bigstar\\

where,

  • π = Pie or 22/7
  • r = Radius
  • h = Height

Solution :-

Given :

  • Radius = 4 cm
  • Height = 5 cm

According to the question by using the formula we get,

\implies \sf\bold{Volume_{(Cone)} =\: \dfrac{1}{3}{\pi}r^2h}\\

\implies \sf Volume_{(Cone)} =\: \dfrac{1}{3} \times {\pi} \times (4)^2 \times 5\\

\implies \sf Volume_{(Cone)} =\: \dfrac{1}{3} \times {\pi} \times (4 \times 4) \times 5\\

\implies \sf Volume_{(Cone)} =\: \dfrac{1}{3} \times {\pi} \times 16 \times 5\\

\implies \sf Volume_{(Cone)} =\: \dfrac{1}{3} \times {\pi} \times 80\\

\implies \sf Volume_{(Cone)} =\: \dfrac{1 \times 80}{3} \times {\pi}\\

\implies \sf Volume_{(Cone)} =\: \dfrac{80}{3} \times {\pi}\\

\implies \sf\bold{Volume_{(Cone)} =\: 26.67{\pi}\: cm^3}\\

\therefore The volume of the cone is 26.67π cm³ .

[Note :- There is some mistakes with your options because the above step is correct. ]

Similar questions