Math, asked by 1234566059, 1 month ago

Find the volume of the region bounded above by the paraboloid z=x^ 2 + y ^ 2 and below by the square : - 1 <= x <= 1, - 1 <= y <= 1 .​

Attachments:

Answers

Answered by Pratham8588
1

Answer:

81 pie r Mark me as brain list

Attachments:
Answered by shownmintu
2

Tip:

  • If g(x)\geq 0 on the interval [a,b] , then (double integration) \iint\limits_R {f(x,y) \, dA has similar interpretation in terms of volume.

Explanation:

  • Given z=x^2+y^2 and R:~-1\leq x\leq 1,~-1\leq y\leq 1.
  • We have to find the  volume of the region bounded .
  • We will solve this question by using the formula.

Step

Step 1 of 2:

Volume =\iint\limits_R {z} \, dA

where,  z=x^2+y^2 and R:~-1\leq x\leq 1,~-1\leq y\leq 1.

Step 2 of 2:

Volume =\int_{-1}^1\int_{-1}^1 x^2+y^2 \, dxdy\\

             =\int_{-1}^1{(\frac{x^3}{3}+y^2x)|_{-1}^1} \, dy\\\\=\int_{-1}^1{(\frac{1}{3}+y^2-[-\frac{1}{3}-y^2])} \,dy\\\\=\int_{-1}^1{(\frac{2}{3}+2y^2)}\, dy\\\\=\frac{2y}{3}+\frac{2}{3}y^3\left|_{-1}^1

             =\frac{2}{3}+\frac{2}{3}-[-\frac{2}{3}-\frac{2}{3}]\\\\=\frac{4}{3}+\frac{4}{3}\\\\=\frac{8}{3}

Final Answer:

The volume of the region is \frac{8}{3}

Similar questions