Math, asked by ak8298abhishek, 11 months ago

find the volume surface area of a cuboid of length 10 m, breath 7 m , and height 5 m . ​

Answers

Answered by arnabsaikia43
2

Step-by-step explanation:

Volume of a cuboid = l*b*h

Volume of the surface = 10*7*5

Volume =350 m cube.

Please mark me as brainliest ☺️☺️❤️❤️

Answered by Anonymous
11

AnswEr :

\normalsize\bullet\:\sf\ Length = 10m

\normalsize\bullet\:\sf\ Breadth = 7m

\normalsize\bullet\:\sf\ Height  = 5m

Reference of Image is shown in diagram

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\put(8,5.5){10 m}\put(4,6.3){7 m}\put(11.2,7.5){5 m}\end{picture}

Put the available values of Length, Breadth and Height in formulae to get correct answer and the point that should be remember is that the given values are in meter(m).

 \rule{170}2

\large\underline{\textsf{Volume \: of \: Cuboid:}}

\normalsize\bigstar\:{\boxed{\sf{Volume \: = \: Length \times\ Breadth \times\ Height}}}

\normalsize\dashrightarrow\quad\sf\  Volume = 10 \times\ 7 \times\ 5

\normalsize\dashrightarrow\quad\sf\  Volume = 10 \times\ 35

\normalsize\dashrightarrow\quad\sf\  Volume = 350

\normalsize\dashrightarrow\quad{\underline{\boxed{\sf \red{Volume = 350m^{3}}}}}

\therefore\:\underline{\textsf{Hence, \: the\: Volume \: of \: Cuboid \: is}{\bf{\: 350m^{3} }}}

 \rule{100}1

\large\underline{\textsf{Surface \: area \: of \: Cuboid:}}

\normalsize\bigstar\:{\boxed{\sf{Surface \: area \: = \: lb + bh + hl}}}

\normalsize\ : \implies\quad\sf\ Surface \: area = 10 \times\ 7 + 7 \times\ 5 + 5 \times\ 10

\normalsize\ : \implies\quad\sf\ Surface \: area = 70 + 35 + 50

\normalsize\ : \implies\quad\sf\ Surface \: area = 105 + 50

\normalsize\ : \implies\quad\sf\ Surface \: area = 155

\normalsize\ : \implies\quad{\underline{\boxed{\sf \red{ Surface \: area = 155m^{2} }}}}

\therefore\:\underline{\textsf{Hence, \: the \: Surface \: area \: of \: cuboid \: is}{\bf{\: 155m^{2}}}}

Similar questions