English, asked by dakshshukla022, 1 year ago

Find the volume, the total surface area and the lateral surface area of
a cuboid which is 15 m long, 12 m wide and 4.5 m high.​

Answers

Answered by aditi4441
1
The total surface area of cuboid =2(lb+bh+hl)
=2(15+12+4.5)
=2(27+4.5)
=2(31.5)
=63 m cube
CSA=2(l+b)h
=2(15+12)4.5
=2(27)4.5
=2×27×4.5
=243 m cube
Area of cuboid= l×b×h
=15×12×4.5
=810 m cube
Answered by ButterFliee
6

\huge\underline\mathrm{GivEn:-}

Length of cuboid = 15 m

Breadth of cuboid = 12 m

Height of cuboid = 4.5 m

\huge\underline\mathrm{To\: Find:-}

Find the T.S.A. , C.S.A. and Volume of cuboid = ?

\huge\underline\mathrm{SoLution:-}

To find the C.S.A. of cuboid, we use the formula:- \rm{2h(l+ b)}

Now, putting the given values in formula

\small\implies{\sf }C.S.A = 2\times4.5(15+12)

\small\implies{\sf }C.S.A = 9 \times 27

\small\implies{\sf }C.S.A = 243

Hence, the C.S.A. of cuboid is 243

To find the T.S.A. of cuboid, we use the formula:- \rm{2(lb+ bh + hl)}

Now, putting the given values in formula

\small\implies{\sf }T.S.A. = 2[(15 \times 12) + (12 \times4.5) + (4.5 \times15)]

\small\implies{\sf }T.S.A = 2(180 + 54 + 67.5)

\small\implies{\sf }T.S.A. = 2(301.5)

\small\implies{\sf } T.S.A. = 603

Hence, the T.S.A. of cuboid is 603

To find the Volume of cuboid, we use the formula:- l\timesb\timesh

Now, putting the given values in formula

\small\implies{\sf }Volume = 12\times 15 \times4.5

\small\implies{\sf } Volume = 810 m³

Hence, the Volume of cuboid is 810 m³

Similar questions