Math, asked by ishavkhatwani7963, 1 day ago

Find the x for the given secind degree equation x²-50x-600=0

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

Given Equation:

\rm: \longmapsto {x}^{2} - 50x - 600 = 0

By splitting the middle term, we get:

\rm: \longmapsto {x}^{2} - (60 - 10)x - 600 = 0

\rm: \longmapsto {x}^{2} - 60x + 10x - 600 = 0

\rm: \longmapsto x(x - 60) + 10(x - 60)= 0

\rm: \longmapsto (x+ 10)(x - 60)= 0

By Zero Product Rule, we can say that:

\rm: \longmapsto \begin{cases} \rm (x+ 10) = 0 \\  \rm(x - 60)= 0 \end{cases}

\rm: \longmapsto x = 60, - 10

So, the values of x satisfying the given equation are 60 and -10.

\textsf{\large{\underline{Verification}:}}

Put x = 60 in the equation, we get:

 \rm =  {(60)}^{2}  - 50 \times 60 - 600

 \rm = 3600 - 3000 - 600

 \rm = 600- 600

 \rm =0

Put x = -10 in the equation, we get:

 \rm =  {( - 10)}^{2}  - 50 \times ( - 10) - 600

 \rm = 100 + 500- 600

 \rm =0

★ Hence, our answers are correct (Verified).

\textsf{\large{\underline{Answer}:}}

  • The values of x are 60 and -10.
Answered by NITESH761
0

Answer:

x = -10 or 60

Step-by-step explanation:

we have,

\rm x^2 -50x-600=0

\rm \Rightarrow x^2 -(60 - 10)x-600=0

\rm \Rightarrow x^2 -60x+10x-600=0

\rm \Rightarrow x(x-60)+10(x-60)=0

\rm \Rightarrow (x+10)(x-60)=0

\rm \Rightarrow (x+10)=0\: or \:(x-60)=0

\rm \Rightarrow x=-10\:or\: x=60

Similar questions